Rujie Liu, Wei He, Hongwei Dong, Tao Han, Yuting Yang, Hongwei Yu, Zhu Li
{"title":"Application of Dynamic Weight Mixture Model Based on Dual Sliding Windows in Carbon Price Forecasting","authors":"Rujie Liu, Wei He, Hongwei Dong, Tao Han, Yuting Yang, Hongwei Yu, Zhu Li","doi":"10.3390/en17153662","DOIUrl":null,"url":null,"abstract":"As global climate change intensifies, nations around the world are implementing policies aimed at reducing emissions, with carbon-trading mechanisms emerging as a key market-based tool. China has launched carbon-trading markets in several cities, achieving significant trading volumes. Carbon-trading mechanisms encompass cap-and-trade markets and voluntary markets, influenced by various factors, including policy changes, economic conditions, energy prices, and climate fluctuations. The complexity of these factors, coupled with the nonlinear and non-stationary nature of carbon prices, makes forecasting a substantial challenge. This paper proposes a dynamic weight hybrid forecasting model based on a dual sliding window approach, effectively integrating multiple forecasting models such as LSTM, Random Forests, and LASSO. This model facilitates a thorough analysis of the influences of policy, market dynamics, technological advancements, and climatic conditions on carbon pricing. It serves as a potent tool for predicting carbon market price fluctuations and offers valuable decision support to stakeholders in the carbon market, ultimately aiding in the global efforts towards emission reduction and achieving sustainable development goals.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"51 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153662","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As global climate change intensifies, nations around the world are implementing policies aimed at reducing emissions, with carbon-trading mechanisms emerging as a key market-based tool. China has launched carbon-trading markets in several cities, achieving significant trading volumes. Carbon-trading mechanisms encompass cap-and-trade markets and voluntary markets, influenced by various factors, including policy changes, economic conditions, energy prices, and climate fluctuations. The complexity of these factors, coupled with the nonlinear and non-stationary nature of carbon prices, makes forecasting a substantial challenge. This paper proposes a dynamic weight hybrid forecasting model based on a dual sliding window approach, effectively integrating multiple forecasting models such as LSTM, Random Forests, and LASSO. This model facilitates a thorough analysis of the influences of policy, market dynamics, technological advancements, and climatic conditions on carbon pricing. It serves as a potent tool for predicting carbon market price fluctuations and offers valuable decision support to stakeholders in the carbon market, ultimately aiding in the global efforts towards emission reduction and achieving sustainable development goals.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico