Impact and Challenges of Data Mining : A Comprehensive Analysis

Chandrakant D. Prajapati, Asha K. Patel, Dr. Krupa J. Bhavsar
{"title":"Impact and Challenges of Data Mining : A Comprehensive Analysis","authors":"Chandrakant D. Prajapati, Asha K. Patel, Dr. Krupa J. Bhavsar","doi":"10.32628/cseit241049","DOIUrl":null,"url":null,"abstract":"This review paper provides a concise overview of Data Mining, a multidisciplinary field focused on extracting valuable insights and patterns from extensive datasets. It highlights the use of statistical analysis, machine learning, and pattern recognition techniques to discover hidden relationships and trends within data. The paper emphasizes data mining's significance as a powerful technology that extracts predictive information from large databases, enabling businesses to prioritize crucial data. It showcases how data mining tools predict future trends, empowering proactive, knowledge-driven decision-making. Furthermore, it discusses the superiority of data mining over retrospective tools, offering automated, prospective analyses to resolve complex business questions efficiently. It uncovers hidden patterns and predictive information beyond human expectations. The core concepts of data mining encountered challenges, data analysis techniques, and their profound impact on various domains are also addressed in this paper. The proposed paper offers a comprehensive overview of data mining's importance, applications, and transformative potential in modern data-driven decision-making processes.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"58 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit241049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper provides a concise overview of Data Mining, a multidisciplinary field focused on extracting valuable insights and patterns from extensive datasets. It highlights the use of statistical analysis, machine learning, and pattern recognition techniques to discover hidden relationships and trends within data. The paper emphasizes data mining's significance as a powerful technology that extracts predictive information from large databases, enabling businesses to prioritize crucial data. It showcases how data mining tools predict future trends, empowering proactive, knowledge-driven decision-making. Furthermore, it discusses the superiority of data mining over retrospective tools, offering automated, prospective analyses to resolve complex business questions efficiently. It uncovers hidden patterns and predictive information beyond human expectations. The core concepts of data mining encountered challenges, data analysis techniques, and their profound impact on various domains are also addressed in this paper. The proposed paper offers a comprehensive overview of data mining's importance, applications, and transformative potential in modern data-driven decision-making processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘的影响与挑战:全面分析
数据挖掘是一个多学科领域,侧重于从大量数据集中提取有价值的见解和模式。它重点介绍了如何利用统计分析、机器学习和模式识别技术来发现数据中隐藏的关系和趋势。论文强调了数据挖掘作为从大型数据库中提取预测信息的强大技术的重要意义,使企业能够对关键数据进行优先排序。它展示了数据挖掘工具如何预测未来趋势,从而帮助企业做出积极主动、以知识为导向的决策。此外,它还讨论了数据挖掘相对于回顾性工具的优越性,提供自动化的前瞻性分析,以高效解决复杂的业务问题。它揭示了隐藏的模式和预测信息,超出了人类的预期。本文还讨论了数据挖掘的核心概念、遇到的挑战、数据分析技术及其对各个领域的深远影响。本文全面概述了数据挖掘在现代数据驱动决策过程中的重要性、应用和变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Hamming Code with Error Correction Using Xilinx Impact and Challenges of Data Mining : A Comprehensive Analysis Enhanced Pansharpening Using Curvelet Transform Optimized by Multi Population Based Differential Evolution Multimodal Data Integration for Early Alzheimer’s Detection Using Random Forest and Support Vector Machines The Future of Enterprise resource planning (ERP): Harnessing Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1