In situ evaluation and manipulation of lithium plating morphology enabling safe and long‐life lithium‐ion batteries

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-07-25 DOI:10.1002/inf2.12612
Shuoyuan Mao, Yu Wang, Yao Lu, Xuebing Han, Yuejiu Zheng, Xuning Feng, Xinqi Ren, Languang Lu, Minggao Ouyang
{"title":"In situ evaluation and manipulation of lithium plating morphology enabling safe and long‐life lithium‐ion batteries","authors":"Shuoyuan Mao, Yu Wang, Yao Lu, Xuebing Han, Yuejiu Zheng, Xuning Feng, Xinqi Ren, Languang Lu, Minggao Ouyang","doi":"10.1002/inf2.12612","DOIUrl":null,"url":null,"abstract":"The morphology of plated lithium (MPL) metal on graphite anodes, traditionally described as “moss‐like” and “dendrite‐like”, exert a substantial negative influence on the performance of lithium‐ion batteries (LIBs) by modulating the metal‐electrolyte interface and side reaction rates. However, a systematic and quantitative analysis of MPL is lacking, impeding effective evaluation and manipulation of this detrimental issue. In this study, we transition from a qualitative analysis to a quantitative one by conducting a detailed examination of the MPL. Our findings reveal that slender lithium dendrites reduces the lifespan and safety of LIB by increasing the side reaction rates and promoting the formation of dead lithium. To further evaluate the extent of the detrimental effect of MPL, we propose the specific surface area (SSA) as a critical metric, and develop an in situ method integrating expansion force and electrochemical impedance spectroscopy to estimate SSA. Finally, we introduce a pulse current protocol to manipulate hazardous MLP. Phase field model simulations and experiments demonstrate that this protocol significantly enhances the reversibility of plated lithium. This research offers a novel morphological perspective on lithium plating, providing a more detailed fundamental understanding that facilitates effective evaluation and manipulation of plated lithium, thereby enhancing the safety and extending the cycle life of LIBs.image","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/inf2.12612","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The morphology of plated lithium (MPL) metal on graphite anodes, traditionally described as “moss‐like” and “dendrite‐like”, exert a substantial negative influence on the performance of lithium‐ion batteries (LIBs) by modulating the metal‐electrolyte interface and side reaction rates. However, a systematic and quantitative analysis of MPL is lacking, impeding effective evaluation and manipulation of this detrimental issue. In this study, we transition from a qualitative analysis to a quantitative one by conducting a detailed examination of the MPL. Our findings reveal that slender lithium dendrites reduces the lifespan and safety of LIB by increasing the side reaction rates and promoting the formation of dead lithium. To further evaluate the extent of the detrimental effect of MPL, we propose the specific surface area (SSA) as a critical metric, and develop an in situ method integrating expansion force and electrochemical impedance spectroscopy to estimate SSA. Finally, we introduce a pulse current protocol to manipulate hazardous MLP. Phase field model simulations and experiments demonstrate that this protocol significantly enhances the reversibility of plated lithium. This research offers a novel morphological perspective on lithium plating, providing a more detailed fundamental understanding that facilitates effective evaluation and manipulation of plated lithium, thereby enhancing the safety and extending the cycle life of LIBs.image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位评估和操纵锂镀层形态,实现安全长寿命的锂离子电池
石墨阳极上的电镀锂(MPL)金属形态传统上被描述为 "苔藓状 "和 "树枝状",通过调节金属-电解质界面和副反应速率,对锂离子电池(LIB)的性能产生重大负面影响。然而,由于缺乏对 MPL 的系统性定量分析,阻碍了对这一有害问题的有效评估和处理。在本研究中,我们通过对 MPL 进行详细研究,从定性分析过渡到定量分析。我们的研究结果表明,细长的锂枝晶会增加副反应率并促进死锂的形成,从而降低锂电池的寿命和安全性。为了进一步评估 MPL 的有害影响程度,我们提出了比表面积(SSA)这一关键指标,并开发了一种集成了膨胀力和电化学阻抗光谱的原位方法来估算 SSA。最后,我们介绍了一种脉冲电流协议来操纵危险的 MLP。相场模型模拟和实验证明,该方案显著提高了电镀锂的可逆性。这项研究为锂镀层提供了一个新的形态学视角,为有效评估和处理镀层锂提供了更详细的基本认识,从而提高了锂电池的安全性并延长了其循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Cover Image Issue Information Cover Image Issue Information Back cover image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1