{"title":"In situ evaluation and manipulation of lithium plating morphology enabling safe and long‐life lithium‐ion batteries","authors":"Shuoyuan Mao, Yu Wang, Yao Lu, Xuebing Han, Yuejiu Zheng, Xuning Feng, Xinqi Ren, Languang Lu, Minggao Ouyang","doi":"10.1002/inf2.12612","DOIUrl":null,"url":null,"abstract":"The morphology of plated lithium (MPL) metal on graphite anodes, traditionally described as “moss‐like” and “dendrite‐like”, exert a substantial negative influence on the performance of lithium‐ion batteries (LIBs) by modulating the metal‐electrolyte interface and side reaction rates. However, a systematic and quantitative analysis of MPL is lacking, impeding effective evaluation and manipulation of this detrimental issue. In this study, we transition from a qualitative analysis to a quantitative one by conducting a detailed examination of the MPL. Our findings reveal that slender lithium dendrites reduces the lifespan and safety of LIB by increasing the side reaction rates and promoting the formation of dead lithium. To further evaluate the extent of the detrimental effect of MPL, we propose the specific surface area (SSA) as a critical metric, and develop an in situ method integrating expansion force and electrochemical impedance spectroscopy to estimate SSA. Finally, we introduce a pulse current protocol to manipulate hazardous MLP. Phase field model simulations and experiments demonstrate that this protocol significantly enhances the reversibility of plated lithium. This research offers a novel morphological perspective on lithium plating, providing a more detailed fundamental understanding that facilitates effective evaluation and manipulation of plated lithium, thereby enhancing the safety and extending the cycle life of LIBs.image","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/inf2.12612","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The morphology of plated lithium (MPL) metal on graphite anodes, traditionally described as “moss‐like” and “dendrite‐like”, exert a substantial negative influence on the performance of lithium‐ion batteries (LIBs) by modulating the metal‐electrolyte interface and side reaction rates. However, a systematic and quantitative analysis of MPL is lacking, impeding effective evaluation and manipulation of this detrimental issue. In this study, we transition from a qualitative analysis to a quantitative one by conducting a detailed examination of the MPL. Our findings reveal that slender lithium dendrites reduces the lifespan and safety of LIB by increasing the side reaction rates and promoting the formation of dead lithium. To further evaluate the extent of the detrimental effect of MPL, we propose the specific surface area (SSA) as a critical metric, and develop an in situ method integrating expansion force and electrochemical impedance spectroscopy to estimate SSA. Finally, we introduce a pulse current protocol to manipulate hazardous MLP. Phase field model simulations and experiments demonstrate that this protocol significantly enhances the reversibility of plated lithium. This research offers a novel morphological perspective on lithium plating, providing a more detailed fundamental understanding that facilitates effective evaluation and manipulation of plated lithium, thereby enhancing the safety and extending the cycle life of LIBs.image
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.