Frameworks for effective data governance: best practices, challenges, and implementation strategies across industries

Naomi Chukwurah, Adebimpe Bolatito Ige, Victor Ibukun Adebayo, Osemeike Gloria Eyieyien
{"title":"Frameworks for effective data governance: best practices, challenges, and implementation strategies across industries","authors":"Naomi Chukwurah, Adebimpe Bolatito Ige, Victor Ibukun Adebayo, Osemeike Gloria Eyieyien","doi":"10.51594/csitrj.v5i7.1351","DOIUrl":null,"url":null,"abstract":"This paper explores frameworks for effective data governance, emphasizing the importance of robust policies, processes, roles, and metrics. It outlines best practices for ensuring high data quality, data privacy, and security while highlighting stakeholder engagement and the role of technology. The paper also discusses implementation challenges, including organizational, technical, regulatory, and cultural obstacles. It presents tailored strategies for various industries such as financial services, healthcare, retail, manufacturing, and the public sector. Future directions for research include the integration of AI and machine learning, evolving data privacy regulations, and the challenges posed by big data and IoT. Effective data governance is crucial for managing risks, ensuring compliance, and unlocking the full potential of data assets across industries. \nKeywords: Data Governance, Data Quality Management, Data Privacy, Regulatory Compliance.","PeriodicalId":282796,"journal":{"name":"Computer Science & IT Research Journal","volume":"44 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & IT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/csitrj.v5i7.1351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores frameworks for effective data governance, emphasizing the importance of robust policies, processes, roles, and metrics. It outlines best practices for ensuring high data quality, data privacy, and security while highlighting stakeholder engagement and the role of technology. The paper also discusses implementation challenges, including organizational, technical, regulatory, and cultural obstacles. It presents tailored strategies for various industries such as financial services, healthcare, retail, manufacturing, and the public sector. Future directions for research include the integration of AI and machine learning, evolving data privacy regulations, and the challenges posed by big data and IoT. Effective data governance is crucial for managing risks, ensuring compliance, and unlocking the full potential of data assets across industries. Keywords: Data Governance, Data Quality Management, Data Privacy, Regulatory Compliance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效数据管理的框架:各行业的最佳实践、挑战和实施战略
本文探讨了有效数据治理的框架,强调了健全的政策、流程、角色和衡量标准的重要性。它概述了确保高数据质量、数据隐私和安全性的最佳实践,同时强调了利益相关者的参与和技术的作用。本文还讨论了实施方面的挑战,包括组织、技术、监管和文化障碍。它为金融服务、医疗保健、零售、制造和公共部门等不同行业提出了量身定制的战略。未来的研究方向包括人工智能和机器学习的整合、不断发展的数据隐私法规以及大数据和物联网带来的挑战。有效的数据治理对于管理风险、确保合规性以及释放各行业数据资产的全部潜力至关重要。关键词数据治理、数据质量管理、数据隐私、法规遵从。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of pandemic in driving adoption of artificial intelligence in healthcare industry Challenges and strategies in securing smart environmental applications: A comprehensive review of cybersecurity measures Advances in machine learning-driven pore pressure prediction in complex geological settings Data science's pivotal role in enhancing oil recovery methods while minimizing environmental footprints: An insightful review Machine learning software for optimizing SME social media marketing campaigns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1