VGG and InceptionV3 model based on CIFAR data contrast analysis

Yilin Li, Zijie Tang, Miao Qin
{"title":"VGG and InceptionV3 model based on CIFAR data contrast analysis","authors":"Yilin Li, Zijie Tang, Miao Qin","doi":"10.54254/2755-2721/79/20241398","DOIUrl":null,"url":null,"abstract":"This paper introduces in detail the performance comparative analysis of VGG and InceptionV3 based on CIFAR-100 data set in image classification tasks. The experimental results show that the InceptionV3 model performs best on the CIFAR-100 dataset, and its high accuracy and balanced classification effect are impressive. In contrast, the VGG model, while simple in structure, is slightly less accurate. Further analysis shows that InceptionV3 model has more advantages in feature extraction and fusion design, which makes it perform well in image classification tasks. Additionally, the paper explores the broader applications and future prospects of the studied models. By doing so, it provides valuable insights into potential research directions for model comparison. This comprehensive analysis serves as a benchmark, shedding light on the strengths and weaknesses of VGG and InceptionV3 models in image classification. It stands as a valuable reference for future developments in comparative model research.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"41 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/79/20241398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces in detail the performance comparative analysis of VGG and InceptionV3 based on CIFAR-100 data set in image classification tasks. The experimental results show that the InceptionV3 model performs best on the CIFAR-100 dataset, and its high accuracy and balanced classification effect are impressive. In contrast, the VGG model, while simple in structure, is slightly less accurate. Further analysis shows that InceptionV3 model has more advantages in feature extraction and fusion design, which makes it perform well in image classification tasks. Additionally, the paper explores the broader applications and future prospects of the studied models. By doing so, it provides valuable insights into potential research directions for model comparison. This comprehensive analysis serves as a benchmark, shedding light on the strengths and weaknesses of VGG and InceptionV3 models in image classification. It stands as a valuable reference for future developments in comparative model research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CIFAR 数据对比分析的 VGG 和 InceptionV3 模型
本文详细介绍了基于 CIFAR-100 数据集的 VGG 和 InceptionV3 在图像分类任务中的性能对比分析。实验结果表明,InceptionV3 模型在 CIFAR-100 数据集上表现最佳,其高精度和均衡的分类效果令人印象深刻。相比之下,VGG 模型虽然结构简单,但准确率略低。进一步的分析表明,InceptionV3 模型在特征提取和融合设计方面更具优势,因此在图像分类任务中表现出色。此外,本文还探讨了所研究模型的广泛应用和未来前景。这样,它为模型比较的潜在研究方向提供了有价值的见解。这一综合分析作为一个基准,揭示了 VGG 和 InceptionV3 模型在图像分类中的优缺点。它对比较模型研究的未来发展具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on integrating hydrogen energy storage with solar and wind power for Net-Zero energy buildings Design and implementation of scrambling and decoding circuits Research on the life cycle assessment of cement Research on the intelligent fatigue detection of metal components in vehicles Research progress in home energy management systems consideration of comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1