Suresh Prasanth, S. P. Chandar, Kandasamy Gunasekaran
{"title":"Influence of Manufactured Sand on Fresh Properties, Strength Properties and Morphological Characteristics of Self-Compacting Coconut Shell Concrete","authors":"Suresh Prasanth, S. P. Chandar, Kandasamy Gunasekaran","doi":"10.3390/buildings14082281","DOIUrl":null,"url":null,"abstract":"This research examines the fresh properties, strength performance, and morphological analysis of self-compacting coconut shell concrete (SCCSC) blended with crushed coconut shell and manufactured sand (M-sand). Crushed coconut shell (CS) was used as a coarse aggregate (CA), and M-sand replaced river sand (R-sand) at 25%, 50%, 75%, and 100%. The study focused on the workability characteristics, mechanical behavior, and microstructural analysis of SCCSC. Experiments were performed on fresh and mechanical characteristics, including slump flow diameter, T500 slump flow time, L-Box blocking ratio, V-funnel and a wet sieving stability test. Mechanical characteristics include compressive, split tensile, flexural, impact resistance and bond strength. Utilizing M-sand develops the mechanical performance of SCCSC. The morphological characteristics, using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and the X-ray diffraction (XRD) technique, were studied in this research work. The findings show that the addition of M-sand increases the concrete strength. The microstructural analysis demonstrates that adding different amounts of M-sand to SCCSC reduced the porosity and anhydrous cement percentage, although it increased calcium hydroxide and hydration products. The substitution of 100% M-sand at 28 days increased compressive strength by 3.79% relative to the reference SCCSC. Based on the findings, the mechanical strength of SCCSC containing M-sand significantly improved compared to the concrete with river sand.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"9 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research examines the fresh properties, strength performance, and morphological analysis of self-compacting coconut shell concrete (SCCSC) blended with crushed coconut shell and manufactured sand (M-sand). Crushed coconut shell (CS) was used as a coarse aggregate (CA), and M-sand replaced river sand (R-sand) at 25%, 50%, 75%, and 100%. The study focused on the workability characteristics, mechanical behavior, and microstructural analysis of SCCSC. Experiments were performed on fresh and mechanical characteristics, including slump flow diameter, T500 slump flow time, L-Box blocking ratio, V-funnel and a wet sieving stability test. Mechanical characteristics include compressive, split tensile, flexural, impact resistance and bond strength. Utilizing M-sand develops the mechanical performance of SCCSC. The morphological characteristics, using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and the X-ray diffraction (XRD) technique, were studied in this research work. The findings show that the addition of M-sand increases the concrete strength. The microstructural analysis demonstrates that adding different amounts of M-sand to SCCSC reduced the porosity and anhydrous cement percentage, although it increased calcium hydroxide and hydration products. The substitution of 100% M-sand at 28 days increased compressive strength by 3.79% relative to the reference SCCSC. Based on the findings, the mechanical strength of SCCSC containing M-sand significantly improved compared to the concrete with river sand.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico