{"title":"Characterization of electron extraction from a 40.68 MHz radiofrequency inductive plasma source","authors":"Kodai Kikuchi, Kazunori Takahashi","doi":"10.35848/1347-4065/ad66d9","DOIUrl":null,"url":null,"abstract":"\n An electron current is extracted from a 40.68 MHz inductively coupled plasma source, in which a grounded ion collector electrode is installed to maintain the charge neutrality, by applying a positive voltage to a metallic plate located downstream of the source. The ion collector has an exit orifice of either 20 mm or 2.2 mm in diameter, showing a larger electron extraction current for the 2.2-mm-diameter case. The result is discussed with a global model, implying a higher plasma density for the 2.2-mm-diameter case due to the increased neutral pressure in the source. Metallic and insulator exit having the 2.2-mm-diameter orifice are tested, providing a larger electron extraction current for the metallic case despite a small fraction of a change in the total ion collection area. It is speculated that the electron extraction current is affected by the ion collection near the electron extraction hole and the potential distribution.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"87 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad66d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An electron current is extracted from a 40.68 MHz inductively coupled plasma source, in which a grounded ion collector electrode is installed to maintain the charge neutrality, by applying a positive voltage to a metallic plate located downstream of the source. The ion collector has an exit orifice of either 20 mm or 2.2 mm in diameter, showing a larger electron extraction current for the 2.2-mm-diameter case. The result is discussed with a global model, implying a higher plasma density for the 2.2-mm-diameter case due to the increased neutral pressure in the source. Metallic and insulator exit having the 2.2-mm-diameter orifice are tested, providing a larger electron extraction current for the metallic case despite a small fraction of a change in the total ion collection area. It is speculated that the electron extraction current is affected by the ion collection near the electron extraction hole and the potential distribution.