{"title":"Experimental Study on the Impact Resistance Performance of Civil Air Defense RC Walls Protected by Honeycomb Sandwich Panels","authors":"Ran Yang, Dayi Qu, Jigang Zhang","doi":"10.3390/buildings14082293","DOIUrl":null,"url":null,"abstract":"Reinforced concrete (RC) walls are extensively used in civil air defense engineering and are susceptible to low-speed impacts with high energy and massive weight during service. Therefore, it is crucial to consider the impact resistance of these walls and explore effective protection methods. The honeycomb structure, known for its energy-absorbing properties, has been widely utilized in aerospace, automotive, and maritime industries. However, there is a need for more research on applying honeycomb structures in energy-absorbing protection devices in civil engineering. This study proposes the use of honeycomb sandwich panels to protect civil air defense RC walls, creating a Honeycomb Sandwich Panel Composite RC wall (HSP-RC wall). Through pendulum impact experiments, we investigated the dynamic response of RC walls, both standard and HSP-RC walls with varying honeycomb parameters, under high-energy impacts. The goal was to evaluate the impact resistance of these RC walls, analyze the deformation differences among different HSP-RC walls, and examine the influence of honeycomb parameters on the impact protection effectiveness. The research results indicate that honeycomb sandwich panels can provide impact protection for RC walls by absorbing energy, and their protection effect is related to the parameters of the honeycomb core layer. This research result can be applied to RC structures that bear impact loads, achieving effective protection for RC structures.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"38 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforced concrete (RC) walls are extensively used in civil air defense engineering and are susceptible to low-speed impacts with high energy and massive weight during service. Therefore, it is crucial to consider the impact resistance of these walls and explore effective protection methods. The honeycomb structure, known for its energy-absorbing properties, has been widely utilized in aerospace, automotive, and maritime industries. However, there is a need for more research on applying honeycomb structures in energy-absorbing protection devices in civil engineering. This study proposes the use of honeycomb sandwich panels to protect civil air defense RC walls, creating a Honeycomb Sandwich Panel Composite RC wall (HSP-RC wall). Through pendulum impact experiments, we investigated the dynamic response of RC walls, both standard and HSP-RC walls with varying honeycomb parameters, under high-energy impacts. The goal was to evaluate the impact resistance of these RC walls, analyze the deformation differences among different HSP-RC walls, and examine the influence of honeycomb parameters on the impact protection effectiveness. The research results indicate that honeycomb sandwich panels can provide impact protection for RC walls by absorbing energy, and their protection effect is related to the parameters of the honeycomb core layer. This research result can be applied to RC structures that bear impact loads, achieving effective protection for RC structures.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico