Thomas Hanemann, Alexander Klein, Heinz Walter, David Wilhelm, Steffen Antusch
{"title":"Evaluation of Material Extrusion Printed PEEK Mold Inserts for Usage in Ceramic Injection Molding","authors":"Thomas Hanemann, Alexander Klein, Heinz Walter, David Wilhelm, Steffen Antusch","doi":"10.3390/jmmp8040156","DOIUrl":null,"url":null,"abstract":"The rapid tooling of mold inserts for injection molding allows for very fast product development, as well as a highly customized design. For this, a combination of rapid prototyping methods with suitable polymer materials, like the high-performance thermoplastic polymer polyetheretherketone (PEEK), should be applied. As a drawback, a huge processing temperature beyond 400 °C is necessary for material extrusion (MEX)-based 3D printing; here, Fused Filament Fabrication (FFF) requires a more sophisticated printing parameter investigation. In this work, suitable MEX printing strategies, covering printing parameters like printing temperature and speed, for the realization of two different mold insert surface geometries were evaluated, and the resulting print quality was inspected. As a proof of concept, ceramic injection molding was used for replication. Under consideration of the two different test structures, the ceramic feedstock could be replicated successfully and to an acceptable quality without significant mold insert deterioration.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"36 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040156","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid tooling of mold inserts for injection molding allows for very fast product development, as well as a highly customized design. For this, a combination of rapid prototyping methods with suitable polymer materials, like the high-performance thermoplastic polymer polyetheretherketone (PEEK), should be applied. As a drawback, a huge processing temperature beyond 400 °C is necessary for material extrusion (MEX)-based 3D printing; here, Fused Filament Fabrication (FFF) requires a more sophisticated printing parameter investigation. In this work, suitable MEX printing strategies, covering printing parameters like printing temperature and speed, for the realization of two different mold insert surface geometries were evaluated, and the resulting print quality was inspected. As a proof of concept, ceramic injection molding was used for replication. Under consideration of the two different test structures, the ceramic feedstock could be replicated successfully and to an acceptable quality without significant mold insert deterioration.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico