GROUP GAMMA-DISTRIBUTION AND NEURAL NETWORK IN OF THE LATEST TELECOMMUNICATION TRAFFIC MODELING

{"title":"GROUP GAMMA-DISTRIBUTION AND NEURAL NETWORK IN OF THE LATEST TELECOMMUNICATION TRAFFIC MODELING","authors":"","doi":"10.18469/ikt.2023.21.4.04","DOIUrl":null,"url":null,"abstract":"This article considers queue formation in the M/D/1 system with statistical characteristics of the first two orders that areclose to real, as the purpose of telecommunication traffic modeling . The input stream to the system is considered to be a group stream with constant parameters of the package and distance between arrivals, influenced by gamma distribution. These parameters are determined by a neural network trained to determine parameters of such input streams according to statistical characteristics of the queue at various loads of device. The results obtained demonstrate a good ap-proximation with the use of gamma-ray fluxes. Parameters are evaluated with the use of the neural network. The practical usefulness of the considered approach and the prospects of using neural net-works for practical tasks in solving which queue theory is used are provided.","PeriodicalId":508406,"journal":{"name":"Infokommunikacionnye tehnologii","volume":"56 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infokommunikacionnye tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/ikt.2023.21.4.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers queue formation in the M/D/1 system with statistical characteristics of the first two orders that areclose to real, as the purpose of telecommunication traffic modeling . The input stream to the system is considered to be a group stream with constant parameters of the package and distance between arrivals, influenced by gamma distribution. These parameters are determined by a neural network trained to determine parameters of such input streams according to statistical characteristics of the queue at various loads of device. The results obtained demonstrate a good ap-proximation with the use of gamma-ray fluxes. Parameters are evaluated with the use of the neural network. The practical usefulness of the considered approach and the prospects of using neural net-works for practical tasks in solving which queue theory is used are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最新电信流量建模中的伽马分布群和神经网络
本文以电信流量建模为目的,研究了 M/D/1 系统中队列的形成,该系统具有接近真实的前两阶统计特征。系统的输入流被认为是受伽马分布影响的、具有恒定的包裹参数和到达间距的群流。这些参数由经过训练的神经网络确定,该网络可根据不同设备负载下队列的统计特征确定此类输入流的参数。结果表明,使用伽马射线通量可以很好地进行近似。使用神经网络对参数进行了评估。该方法的实用性以及使用神经网络解决实际问题的前景都得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CONCEPT OF APPLICATION OF CONTROL ALGORITHMS FOR MANIPULATION ROBOTS TO PERFORM COMPLEX TECHNOLOGICAL OPERATIONS IN INDUSTRY OPTIMIZATION OF MODE PROPAGATION FOR AN EMBEDIER OF OPTICALVORTEX BEAMS BASED ON A MICRO-RING RESONATOR RECOMMENDATIONS ON THE URBAN NETWORK FOTL STRUCTURE WITH THE LOWEST POSSIBLE LEVEL OF DISTORTION OF INFORMATION AND CONTROL ILCF-SIGNALS STRUCTURE FEATURES OF MINIMUM FREQUENCY SHIFT KEYING SIGNAL MODEMS TRAFFIC ANOMALY DETECTION IN VEHICLE BUS BY RECURRENT LSTM NEURAL NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1