Translation from Tunisian Dialect to Modern Standard Arabic: Exploring Finite-State Transducers and Sequence-to-Sequence Transformer Approaches

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Asian and Low-Resource Language Information Processing Pub Date : 2024-07-24 DOI:10.1145/3681788
Roua Torjmen, K. Haddar
{"title":"Translation from Tunisian Dialect to Modern Standard Arabic: Exploring Finite-State Transducers and Sequence-to-Sequence Transformer Approaches","authors":"Roua Torjmen, K. Haddar","doi":"10.1145/3681788","DOIUrl":null,"url":null,"abstract":"Translation from the mother tongue, including the Tunisian dialect, to modern standard Arabic is a highly significant field in natural language processing due to its wide range of applications and associated benefits. Recently, researchers have shown increased interest in the Tunisian dialect, primarily driven by the massive volume of content generated spontaneously by Tunisians on social media follow-ing the revolution. This paper presents two distinct translators for converting the Tunisian dialect into Modern Standard Arabic. The first translator utilizes a rule-based approach, employing a collection of finite state transducers and a bilingual dictionary derived from the study corpus. On the other hand, the second translator relies on deep learning models, specifically the sequence-to-sequence trans-former model and a parallel corpus. To assess, evaluate, and compare the performance of the two translators, we conducted tests using a parallel corpus comprising 8,599 words. The results achieved by both translators are noteworthy. The translator based on finite state transducers achieved a blue score of 56.65, while the transformer model-based translator achieved a higher score of 66.07.","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3681788","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Translation from the mother tongue, including the Tunisian dialect, to modern standard Arabic is a highly significant field in natural language processing due to its wide range of applications and associated benefits. Recently, researchers have shown increased interest in the Tunisian dialect, primarily driven by the massive volume of content generated spontaneously by Tunisians on social media follow-ing the revolution. This paper presents two distinct translators for converting the Tunisian dialect into Modern Standard Arabic. The first translator utilizes a rule-based approach, employing a collection of finite state transducers and a bilingual dictionary derived from the study corpus. On the other hand, the second translator relies on deep learning models, specifically the sequence-to-sequence trans-former model and a parallel corpus. To assess, evaluate, and compare the performance of the two translators, we conducted tests using a parallel corpus comprising 8,599 words. The results achieved by both translators are noteworthy. The translator based on finite state transducers achieved a blue score of 56.65, while the transformer model-based translator achieved a higher score of 66.07.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从突尼斯方言到现代标准阿拉伯语的翻译:探索有限状态转换器和序列到序列转换器方法
从母语(包括突尼斯方言)到现代标准阿拉伯语的翻译是自然语言处理中一个非常重要的领域,因为它具有广泛的应用范围和相关优势。最近,研究人员对突尼斯方言的兴趣与日俱增,主要原因是突尼斯革命后突尼斯人在社交媒体上自发产生了大量内容。本文介绍了两种将突尼斯方言转换为现代标准阿拉伯语的不同翻译器。第一个翻译器采用基于规则的方法,使用了一系列有限状态转换器和从研究语料库中提取的双语词典。另一方面,第二个翻译器依赖于深度学习模型,特别是序列到序列转换器模型和平行语料库。为了评估、评价和比较两个翻译器的性能,我们使用包含 8,599 个单词的平行语料库进行了测试。两个翻译器取得的结果都值得注意。基于有限状态转换器的翻译器获得了 56.65 的蓝色分数,而基于转换器模型的翻译器获得了 66.07 的较高分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
期刊最新文献
Learning and Vision-based approach for Human fall detection and classification in naturally occurring scenes using video data A DENSE SPATIAL NETWORK MODEL FOR EMOTION RECOGNITION USING LEARNING APPROACHES CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1