Sebastian Nilsson, David Sanned, Adrian Roth, Jinguo Sun, Edouard Berrocal, Mattias Richter, Andreas Ehn
{"title":"Holistic analysis of a gliding arc discharge using 3D tomography and single-shot fluorescence lifetime imaging","authors":"Sebastian Nilsson, David Sanned, Adrian Roth, Jinguo Sun, Edouard Berrocal, Mattias Richter, Andreas Ehn","doi":"10.1038/s44172-024-00250-z","DOIUrl":null,"url":null,"abstract":"Gliding arc plasmas, a versatile form of non-thermal plasma discharges, hold great promise for sustainable chemical conversion in electrified industrial applications. Their relatively high temperatures compared to other non-thermal plasmas, reactive species generation, and efficient energy transfer make them ideal for an energy-efficient society. However, plasma discharges are transient and complex 3D entities influenced by gas pressure, mixture, and power, posing challenges for in-situ measurements of chemical species and spatial dynamics. Here we demonstrate a combination of innovative approaches, providing a comprehensive view of discharges and their chemical surroundings by combining fluorescence lifetime imaging of hydroxyl (OH) radicals with optical emission 3D tomography. This reveals variations in OH radical distributions under different conditions and local variations in fluorescence quantum yield with high spatial resolution from a single laser shot. Our results and methodology offer a multidimensional platform for interdisciplinary research in plasma physics and chemistry. Sebastian Nilsson and colleagues capture the 3D structure of a gliding arc plasma and simultaneously apply a single shot fluorescence lifetime imaging from which the physical properties linked to the chemistry and molecular collision dynamics can be extracted.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00250-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00250-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gliding arc plasmas, a versatile form of non-thermal plasma discharges, hold great promise for sustainable chemical conversion in electrified industrial applications. Their relatively high temperatures compared to other non-thermal plasmas, reactive species generation, and efficient energy transfer make them ideal for an energy-efficient society. However, plasma discharges are transient and complex 3D entities influenced by gas pressure, mixture, and power, posing challenges for in-situ measurements of chemical species and spatial dynamics. Here we demonstrate a combination of innovative approaches, providing a comprehensive view of discharges and their chemical surroundings by combining fluorescence lifetime imaging of hydroxyl (OH) radicals with optical emission 3D tomography. This reveals variations in OH radical distributions under different conditions and local variations in fluorescence quantum yield with high spatial resolution from a single laser shot. Our results and methodology offer a multidimensional platform for interdisciplinary research in plasma physics and chemistry. Sebastian Nilsson and colleagues capture the 3D structure of a gliding arc plasma and simultaneously apply a single shot fluorescence lifetime imaging from which the physical properties linked to the chemistry and molecular collision dynamics can be extracted.
滑动电弧等离子体是一种多用途的非热等离子体放电形式,在电气化工业应用的可持续化学转换方面大有可为。与其他非热等离子体相比,滑弧式等离子体具有相对较高的温度、反应性物种生成和高效的能量传递等特点,是实现高能效社会的理想选择。然而,等离子体放电是受气体压力、混合物和功率影响的瞬态复杂三维实体,给化学物种和空间动态的现场测量带来了挑战。在这里,我们展示了一种创新方法的组合,通过将羟基(OH)自由基的荧光寿命成像与光发射 3D 层析成像相结合,提供了放电及其周围化学环境的全面视图。这揭示了羟基自由基在不同条件下的分布变化以及荧光量子产率的局部变化,单次激光发射即可实现高空间分辨率。我们的成果和方法为等离子体物理和化学的跨学科研究提供了一个多维平台。Sebastian Nilsson 及其同事捕捉了滑弧等离子体的三维结构,并同时应用了单次荧光寿命成像,从中提取了与化学和分子碰撞动力学相关的物理特性。