Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2024-07-23 DOI:10.4028/p-uyw1nl
Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady
{"title":"Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study","authors":"Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady","doi":"10.4028/p-uyw1nl","DOIUrl":null,"url":null,"abstract":"This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-uyw1nl","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用聚氨酯-聚苯胺纳米复合泡沫对刚果红染料进行连续修复:实验与优化研究
本研究采用了一种创新方法,利用通过原位聚合制备的干燥聚氨酯-聚苯胺纳米复合材料对刚果红染料进行连续修复。基于方框-贝肯设计(BBD)模型的响应面方法(RSM)被用来优化处理参数,包括初始染料浓度、流速和 pH 值。双因素交互作用(2FI)模型最为显著,凸显了各因素的个体影响和交互作用。对染料修复过程的优化得出了最佳条件:流速为 10 mL/min,酸性 pH 值为 5.00,染料浓度为 20 mg/L,结果令人印象深刻,预测去除率为 99.09%,与实验值一致。此外,最大吸附容量为 329.68 mg/g。吸附材料的表征技术包括扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、X 射线光谱(XRD)和 Zeta 电位分析。这种材料为工业提供了一种可持续的替代方法,在将刚果红染料弃置到环境中之前对其进行处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy Journal of Nano Research Vol. 83 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1