A. Abanda, Langola Olivier, Bikoun Joseph, Didier Fokwa, Kikmo Christophe
{"title":"Application of the Discrete Element Method to Landslides","authors":"A. Abanda, Langola Olivier, Bikoun Joseph, Didier Fokwa, Kikmo Christophe","doi":"10.11648/j.jccee.20240904.11","DOIUrl":null,"url":null,"abstract":"Civil engineering is defined as all construction related to the ground. In other words, civil engineering is only possible where there is soil. Construction professionals should not face any obstacles when building sustainably in any soil context. Knowledge of the altimetric state, including hills, mountains, valleys, etc., and the subterranean state, including obstacles such as compressible soil, holes, water tables, and rock masses, is crucial to consider before designing infrastructure. This includes the buried part of a structure and the angle of the natural slope in the superstructure to avoid landslides in the infrastructure. Landslides are natural disasters that have had a devastating impact on several populated areas in Cameroon, resulting in numerous fatalities. The most recent landslides recorded in our country occurred in NGOUACHE, MBANKOLO, MOBIL GUINNESS, among others. Preventing disasters requires an understanding of the relationship between construction and landslides to minimize their occurrence and impact. It is important to campaign for sustainable construction that respects the environment. Understanding landslides involves both destructive and non-destructive approaches. This article presents numerical methods for analysing and predicting phenomena. Among these methods, we focus on the discrete element method, which represents the medium as an assembly of circular, rigid particles. We examine three cases to observe the behaviour of the supporting soils and determine the fracture surface. Additionally, we compare our results with those found in the literature.\n","PeriodicalId":262934,"journal":{"name":"Journal of Civil, Construction and Environmental Engineering","volume":"107 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil, Construction and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.jccee.20240904.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Civil engineering is defined as all construction related to the ground. In other words, civil engineering is only possible where there is soil. Construction professionals should not face any obstacles when building sustainably in any soil context. Knowledge of the altimetric state, including hills, mountains, valleys, etc., and the subterranean state, including obstacles such as compressible soil, holes, water tables, and rock masses, is crucial to consider before designing infrastructure. This includes the buried part of a structure and the angle of the natural slope in the superstructure to avoid landslides in the infrastructure. Landslides are natural disasters that have had a devastating impact on several populated areas in Cameroon, resulting in numerous fatalities. The most recent landslides recorded in our country occurred in NGOUACHE, MBANKOLO, MOBIL GUINNESS, among others. Preventing disasters requires an understanding of the relationship between construction and landslides to minimize their occurrence and impact. It is important to campaign for sustainable construction that respects the environment. Understanding landslides involves both destructive and non-destructive approaches. This article presents numerical methods for analysing and predicting phenomena. Among these methods, we focus on the discrete element method, which represents the medium as an assembly of circular, rigid particles. We examine three cases to observe the behaviour of the supporting soils and determine the fracture surface. Additionally, we compare our results with those found in the literature.