Wenwen Wang, Yan Liu, Xinglong Fan, Zhengmei Zhang
{"title":"Optimization of Charging Station Capacity Based on Energy Storage Scheduling and Bi-Level Planning Model","authors":"Wenwen Wang, Yan Liu, Xinglong Fan, Zhengmei Zhang","doi":"10.3390/wevj15080327","DOIUrl":null,"url":null,"abstract":"With the government’s strong promotion of the transformation of new and old driving forces, the electrification of buses has developed rapidly. In order to improve resource utilization, many cities have decided to open bus charging stations (CSs) to private vehicles, thus leading to the problems of high electricity costs, long waiting times, and increased grid load during peak hours. To address these issues, a dual-layer optimization model was constructed and solved using the Golden Sine Algorithm, balancing the construction cost of CSs and user costs. In addition, the problem was alleviated by combining energy storage scheduling and the M/M/c queue model to reduce grid pressure and shorten waiting times. The study shows that energy storage scheduling effectively reduces grid load, and the electricity cost is reduced by 6.0007%. The average waiting time is reduced to 2.1 min through the queue model, reducing the electric vehicles user’s time cost. The bi-level programming model and energy storage scheduling strategy have positive implications for the operation and development of bus CSs.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15080327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the government’s strong promotion of the transformation of new and old driving forces, the electrification of buses has developed rapidly. In order to improve resource utilization, many cities have decided to open bus charging stations (CSs) to private vehicles, thus leading to the problems of high electricity costs, long waiting times, and increased grid load during peak hours. To address these issues, a dual-layer optimization model was constructed and solved using the Golden Sine Algorithm, balancing the construction cost of CSs and user costs. In addition, the problem was alleviated by combining energy storage scheduling and the M/M/c queue model to reduce grid pressure and shorten waiting times. The study shows that energy storage scheduling effectively reduces grid load, and the electricity cost is reduced by 6.0007%. The average waiting time is reduced to 2.1 min through the queue model, reducing the electric vehicles user’s time cost. The bi-level programming model and energy storage scheduling strategy have positive implications for the operation and development of bus CSs.