Comprehensive Understanding of TGO Morphology Effect on the Thermal Barrier Coatings Failure Under Free Edges

Da Qiao, Wu Zeng
{"title":"Comprehensive Understanding of TGO Morphology Effect on the Thermal Barrier Coatings Failure Under Free Edges","authors":"Da Qiao, Wu Zeng","doi":"10.1115/1.4066027","DOIUrl":null,"url":null,"abstract":"\n The growth stresses induced by the thermally grown oxide (TGO) will be amplified at the free-edge site, making the free-edge site a weak part of the thermal barrier coatings (TBCs). In this study, the TBCs failure behavior is investigated based on different TGO morphologies under free edges. The thermomechanical model is established by creating straight lines and simplified sinusoidal curves, respectively. Dynamic TGO growth is realized by the secondary development of the subroutine. The cohesive element is inserted at the TC/TGO interface to simulate the delamination. The stress evolution near different TGO morphologies under the influence of the free edge are examined. In addition, the interfacial cracking behavior near the free edge is also explored. The results show that the appearance of the free edge will deteriorate the stress condition in the nearby area, change the preferred cracking area, and induce the earlier failure behavior. The straight line morphology has the most “friendly” stress distribution. The sinusoidal curves have peaks and valleys, and different areas of the TGO shape are different under the influence of the free edge, but all of them have the effect of stress “convergence”. These results can provide significant guidance to develop the next-generation advanced TBCs.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4066027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth stresses induced by the thermally grown oxide (TGO) will be amplified at the free-edge site, making the free-edge site a weak part of the thermal barrier coatings (TBCs). In this study, the TBCs failure behavior is investigated based on different TGO morphologies under free edges. The thermomechanical model is established by creating straight lines and simplified sinusoidal curves, respectively. Dynamic TGO growth is realized by the secondary development of the subroutine. The cohesive element is inserted at the TC/TGO interface to simulate the delamination. The stress evolution near different TGO morphologies under the influence of the free edge are examined. In addition, the interfacial cracking behavior near the free edge is also explored. The results show that the appearance of the free edge will deteriorate the stress condition in the nearby area, change the preferred cracking area, and induce the earlier failure behavior. The straight line morphology has the most “friendly” stress distribution. The sinusoidal curves have peaks and valleys, and different areas of the TGO shape are different under the influence of the free edge, but all of them have the effect of stress “convergence”. These results can provide significant guidance to develop the next-generation advanced TBCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全面了解 TGO 形态对热障涂层在自由边缘下失效的影响
热生长氧化物(TGO)引起的生长应力会在自由边缘部位放大,从而使自由边缘部位成为热障涂层(TBC)的薄弱环节。本研究根据自由边缘下不同的 TGO 形态研究了 TBC 的失效行为。通过创建直线和简化正弦曲线,分别建立了热力学模型。通过子程序的二次开发实现了 TGO 的动态生长。在 TC/TGO 界面插入内聚元素来模拟分层。研究了自由边缘影响下不同 TGO 形态附近的应力演变。此外,还探讨了自由边缘附近的界面开裂行为。结果表明,自由边缘的出现会恶化附近区域的应力状况,改变首选开裂区域,并诱发更早的破坏行为。直线形态的应力分布最为 "友好"。正弦曲线有峰有谷,在自由边缘的影响下,TGO 形状的不同区域也有所不同,但都具有应力 "收敛 "的效果。这些结果可为开发下一代先进的 TBC 提供重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1