Hydrogen–Water Isotope Catalytic Exchange Process Analysis by Simulation

Jingwei Hou, Jiamao Li, Chengjian Xiao, Heyi Wang, Shuming Peng
{"title":"Hydrogen–Water Isotope Catalytic Exchange Process Analysis by Simulation","authors":"Jingwei Hou, Jiamao Li, Chengjian Xiao, Heyi Wang, Shuming Peng","doi":"10.3390/separations11070219","DOIUrl":null,"url":null,"abstract":"The hydrogen–water isotope catalytic exchange process has been widely applied in the tritium-containing water treatment process. It can be compared and analyzed conveniently with process simulation software. In this study, the catalytic exchange process was simulated by Aspen Plus software (V11). According to the simulation results, the main reaction process was that HDO in the liquid phase converts into HD in the gas phase, and the reaction mainly occurred at the bottom of the column, exhibiting a two-orders-of-magnitude-higher reaction amount compared to that observed in the top section. Different side reactions occur at distinct positions along the column, exhibiting a reaction amount that is lower by one to two orders of magnitude compared to the main reaction and aligning in the same direction as the main reaction. The optimum operating temperature is 60~80 °C, with the best performance observed at 70 °C, because of the large reaction equilibrium constant and the suitable ratio of vapor to hydrogen (1:4~1:1.5) in the gas phase. The influence of the residence time was investigated by introducing reaction kinetic equations. The residence time should be more than 1 s to ensure an adequate reaction. The influence of operating conditions on the hydrogen–water isotope catalytic exchange process can be deeply investigated by process simulation, and more mass transfer process quantities can be obtained. It plays a promoting role in guiding the process design and condition optimization.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations11070219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen–water isotope catalytic exchange process has been widely applied in the tritium-containing water treatment process. It can be compared and analyzed conveniently with process simulation software. In this study, the catalytic exchange process was simulated by Aspen Plus software (V11). According to the simulation results, the main reaction process was that HDO in the liquid phase converts into HD in the gas phase, and the reaction mainly occurred at the bottom of the column, exhibiting a two-orders-of-magnitude-higher reaction amount compared to that observed in the top section. Different side reactions occur at distinct positions along the column, exhibiting a reaction amount that is lower by one to two orders of magnitude compared to the main reaction and aligning in the same direction as the main reaction. The optimum operating temperature is 60~80 °C, with the best performance observed at 70 °C, because of the large reaction equilibrium constant and the suitable ratio of vapor to hydrogen (1:4~1:1.5) in the gas phase. The influence of the residence time was investigated by introducing reaction kinetic equations. The residence time should be more than 1 s to ensure an adequate reaction. The influence of operating conditions on the hydrogen–water isotope catalytic exchange process can be deeply investigated by process simulation, and more mass transfer process quantities can be obtained. It plays a promoting role in guiding the process design and condition optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢水同位素催化交换过程模拟分析
氢水同位素催化交换工艺已广泛应用于含氚水处理工艺。利用过程模拟软件可以方便地对其进行比较和分析。本研究利用 Aspen Plus 软件(V11)对催化交换过程进行了模拟。根据模拟结果,主要反应过程是液相中的 HDO 转化为气相中的 HD,反应主要发生在塔的底部,与上部相比,反应量高出两个数量级。不同的副反应发生在色谱柱的不同位置,其反应量比主反应低一到两个数量级,并与主反应方向一致。由于反应平衡常数较大,且气相中蒸汽与氢气的比例合适(1:4~1:1.5),因此最佳操作温度为 60~80℃,在 70℃时性能最佳。通过引入反应动力学方程,研究了停留时间的影响。为确保充分反应,停留时间应大于 1 秒。通过过程模拟,可以深入研究操作条件对氢水同位素催化交换过程的影响,获得更多的传质过程量。对指导工艺设计和条件优化起到了促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polyphenols Extraction from Different Grape Pomaces Using Natural Deep Eutectic Solvents The Development and Validation of an LC–Orbitrap–HRMS Method for the Analysis of Four Tetracyclines in Milk and Its Application to Determine Oxytetracycline Concentrations after Intramuscular Administration in Healthy Sarda Ewes and Those Naturally Infected with Streptococcus uberis LC-MS/MS-QTOF Identification of Phenolic Compounds of Sideritis Species Cultivated in Greece An Empirical Study on the Upcycling of Glass Bottles into Hydrocyclone Separators Technology for Aiding the Cyanide Leaching of Gold Ores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1