Mohammad Zarghami, Taher Niknam, Jamshid Aghaei, Azita Hatami Nezhad
{"title":"Concurrent PV production and consumption load forecasting using CT-Transformer deep learning to estimate energy system flexibility","authors":"Mohammad Zarghami, Taher Niknam, Jamshid Aghaei, Azita Hatami Nezhad","doi":"10.1049/rpg2.13050","DOIUrl":null,"url":null,"abstract":"<p>The integration of renewable energy sources (RESs) into power systems has increased significantly due to technical, economic, and environmental factors, necessitating greater flexibility to manage variable consumption loads and renewable energy generation. Accurate forecasting of solar energy production and consumption load is critical for enhancing power system flexibility. This study introduces a novel deep learning model, a spatial-temporal hybrid convolutional-transformer (CT-Transformer) network with unique features and extended memory capacity. Additionally, a flexibility index (FI) is introduced to evaluate power system flexibility (PSF) based on the forecasting results. The CT-Transformer forecasts PSF for the next 24 and 168 hours, using the FI to evaluate PSF based on forecasting results. The input data includes meteorological, solar energy production, load demand, and pricing data from France, comprising hourly data from 2015 and 2016 (about 17,520 entries). Data preprocessing involves correcting incomplete and irrelevant segments. The CT-Transformer's performance is compared to other deep learning techniques, showing superior results with the lowest prediction error (2.5%) and a maximum error of 10.1% (MAE). It also achieved a prediction error of 0.08% for system flexibility, compared to the highest error of 0.96%. This research highlights the CT-Transformer's potential for accurate RES and load forecasting and PSF evaluation.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 13","pages":"2139-2161"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13050","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of renewable energy sources (RESs) into power systems has increased significantly due to technical, economic, and environmental factors, necessitating greater flexibility to manage variable consumption loads and renewable energy generation. Accurate forecasting of solar energy production and consumption load is critical for enhancing power system flexibility. This study introduces a novel deep learning model, a spatial-temporal hybrid convolutional-transformer (CT-Transformer) network with unique features and extended memory capacity. Additionally, a flexibility index (FI) is introduced to evaluate power system flexibility (PSF) based on the forecasting results. The CT-Transformer forecasts PSF for the next 24 and 168 hours, using the FI to evaluate PSF based on forecasting results. The input data includes meteorological, solar energy production, load demand, and pricing data from France, comprising hourly data from 2015 and 2016 (about 17,520 entries). Data preprocessing involves correcting incomplete and irrelevant segments. The CT-Transformer's performance is compared to other deep learning techniques, showing superior results with the lowest prediction error (2.5%) and a maximum error of 10.1% (MAE). It also achieved a prediction error of 0.08% for system flexibility, compared to the highest error of 0.96%. This research highlights the CT-Transformer's potential for accurate RES and load forecasting and PSF evaluation.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf