Characteristics of Grassland Species Diversity and Soil Physicochemical Properties with Elevation Gradient in Burzin Forest Area

Q2 Agricultural and Biological Sciences Agriculture Pub Date : 2024-07-18 DOI:10.3390/agriculture14071176
Jiaorong Qian, Mao Ye, Xi Zhang, Miaomiao Li, Weilong Chen, Guoyan Zeng, Jing Che, Yexin Lv
{"title":"Characteristics of Grassland Species Diversity and Soil Physicochemical Properties with Elevation Gradient in Burzin Forest Area","authors":"Jiaorong Qian, Mao Ye, Xi Zhang, Miaomiao Li, Weilong Chen, Guoyan Zeng, Jing Che, Yexin Lv","doi":"10.3390/agriculture14071176","DOIUrl":null,"url":null,"abstract":"In order to explore the changes and interrelationships of grassland plant community species diversity and soil physicochemical properties with elevation gradient, this study takes the grassland in the Burzin forest area of Xinjiang as the research object and analyzes the responses of grassland species diversity, aboveground biomass, and soil physicochemical properties to the changes of elevation gradient within the altitude range of 1000~2200 m in this area. The results of the study show that: (1) The number of species and aboveground biomass reached the highest levels at elevation gradient III and showed a tendency of increasing and then decreasing with elevation. The Margalef and Shannon–Wiener indices were the largest at elevation III, while the Simpson and Alatalo indices were the largest at elevation I. (2) With the change of elevation, the available nitrogen (AN), available phosphorus (AP), soil electric conductivity (SEC), and soil pH showed a trend of increasing and then decreasing, while soil temperature decreased with elevation. Available potassium and soil water content reached their maximum values at elevation I and elevation IV, respectively. (3) The soil conductivity and diversity index were negatively correlated in elevation gradients I to III. In elevation gradient I~III, soil conductivity was positively correlated with the diversity index and aboveground biomass. Available nitrogen had a significant effect on plant diversity and biomass in elevation gradients IV to VI. (4) Aboveground biomass was significantly positively correlated with the Simpson’s index, while the relationship with the Shannon–Wiener index was less significant, and Margalef’s and Alatalo’s indices were not significant. Soil conductivity and pH significantly affected the Margalef and Simpson indices. Available nitrogen was closely related to the aboveground biomass and Margalef and Alatalo indices. Soil moisture content significantly affected Simpson’s index and the aboveground biomass. This study provides a solid theoretical foundation for the conservation and management of grassland plant community ecosystems along the elevation gradient, and has important reference value for study of the impact of environmental change on species diversity and biodiversity conservation.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":" 81","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In order to explore the changes and interrelationships of grassland plant community species diversity and soil physicochemical properties with elevation gradient, this study takes the grassland in the Burzin forest area of Xinjiang as the research object and analyzes the responses of grassland species diversity, aboveground biomass, and soil physicochemical properties to the changes of elevation gradient within the altitude range of 1000~2200 m in this area. The results of the study show that: (1) The number of species and aboveground biomass reached the highest levels at elevation gradient III and showed a tendency of increasing and then decreasing with elevation. The Margalef and Shannon–Wiener indices were the largest at elevation III, while the Simpson and Alatalo indices were the largest at elevation I. (2) With the change of elevation, the available nitrogen (AN), available phosphorus (AP), soil electric conductivity (SEC), and soil pH showed a trend of increasing and then decreasing, while soil temperature decreased with elevation. Available potassium and soil water content reached their maximum values at elevation I and elevation IV, respectively. (3) The soil conductivity and diversity index were negatively correlated in elevation gradients I to III. In elevation gradient I~III, soil conductivity was positively correlated with the diversity index and aboveground biomass. Available nitrogen had a significant effect on plant diversity and biomass in elevation gradients IV to VI. (4) Aboveground biomass was significantly positively correlated with the Simpson’s index, while the relationship with the Shannon–Wiener index was less significant, and Margalef’s and Alatalo’s indices were not significant. Soil conductivity and pH significantly affected the Margalef and Simpson indices. Available nitrogen was closely related to the aboveground biomass and Margalef and Alatalo indices. Soil moisture content significantly affected Simpson’s index and the aboveground biomass. This study provides a solid theoretical foundation for the conservation and management of grassland plant community ecosystems along the elevation gradient, and has important reference value for study of the impact of environmental change on species diversity and biodiversity conservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布尔津林区草地物种多样性和土壤理化性质随海拔梯度变化的特征
为探讨草地植物群落物种多样性和土壤理化性质随海拔梯度的变化及其相互关系,本研究以新疆布尔津林区草地为研究对象,分析了该地区海拔1000~2200 m范围内草地物种多样性、地上生物量和土壤理化性质对海拔梯度变化的响应。研究结果表明(1)物种数和地上生物量在海拔梯度Ⅲ处达到最高水平,并呈现出随海拔升高先增加后减少的趋势。(2) 随着海拔的变化,可利用氮(AN)、可利用磷(AP)、土壤电导率(SEC)和土壤 pH 值呈先升高后降低的趋势,土壤温度随海拔升高而降低。可利用钾和土壤含水量分别在海拔Ⅰ和海拔Ⅳ处达到最大值。(3)土壤电导率与多样性指数在海拔梯度Ⅰ~Ⅲ呈负相关。在海拔梯度 I~III 中,土壤导电率与多样性指数和地上生物量呈正相关。在海拔梯度 IV 至 VI 中,可用氮对植物多样性和生物量有显著影响。(4) 地上生物量与辛普森指数呈显著正相关,而与香农-维纳指数的关系不显著,Margalef 指数和 Alatalo 指数不显著。土壤导电率和 pH 值对 Margalef 指数和辛普森指数有明显影响。可利用氮与地上生物量以及 Margalef 和 Alatalo 指数密切相关。土壤水分含量对辛普森指数和地上生物量有明显影响。该研究为海拔梯度草原植物群落生态系统的保护和管理提供了坚实的理论基础,对研究环境变化对物种多样性的影响和生物多样性保护具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agriculture
Agriculture Agricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍: The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.
期刊最新文献
Effects of Abscisic Acid on Rice Seed Dormancy: Antioxidant Response and Accumulations of Melatonin, Phenolics and Momilactones Classification of Degradable Mulch Films and Their Promotional Effects and Limitations on Agricultural Production Deep Learning with a Multi-Task Convolutional Neural Network to Generate a National-Scale 3D Soil Data Product: The Particle Size Distribution of the German Agricultural Soil Landscape Enhanced Food-Production Efficiencies through Integrated Farming Systems in the Hau Giang Province in the Mekong Delta, Vietnam The Influence of Nitrogen and Sulfur Fertilization on Oil Quality and Seed Meal in Different Genotypes of Winter Oilseed Rape (Brassica napus L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1