Privacy-Preserving Real-Time Action Detection in Intelligent Vehicles Using Federated Learning-Based Temporal Recurrent Network

Alpaslan Gökcen, Ali Boyacı
{"title":"Privacy-Preserving Real-Time Action Detection in Intelligent Vehicles Using Federated Learning-Based Temporal Recurrent Network","authors":"Alpaslan Gökcen, Ali Boyacı","doi":"10.3390/electronics13142820","DOIUrl":null,"url":null,"abstract":"This study introduces a privacy-preserving approach for the real-time action detection in intelligent vehicles using a federated learning (FL)-based temporal recurrent network (TRN). This approach enables edge devices to independently train models, enhancing data privacy and scalability by eliminating central data consolidation. Our FL-based TRN effectively captures temporal dependencies, anticipating future actions with high precision. Extensive testing on the Honda HDD and TVSeries datasets demonstrated robust performance in centralized and decentralized settings, with competitive mean average precision (mAP) scores. The experimental results highlighted that our FL-based TRN achieved an mAP of 40.0% in decentralized settings, closely matching the 40.1% in centralized configurations. Notably, the model excelled in detecting complex driving maneuvers, with mAPs of 80.7% for intersection passing and 78.1% for right turns. These outcomes affirm the model’s accuracy in action localization and identification. The system showed significant scalability and adaptability, maintaining robust performance across increased client device counts. The integration of a temporal decoder enabled predictions of future actions up to 2 s ahead, enhancing the responsiveness. Our research advances intelligent vehicle technology, promoting safety and efficiency while maintaining strict privacy standards.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a privacy-preserving approach for the real-time action detection in intelligent vehicles using a federated learning (FL)-based temporal recurrent network (TRN). This approach enables edge devices to independently train models, enhancing data privacy and scalability by eliminating central data consolidation. Our FL-based TRN effectively captures temporal dependencies, anticipating future actions with high precision. Extensive testing on the Honda HDD and TVSeries datasets demonstrated robust performance in centralized and decentralized settings, with competitive mean average precision (mAP) scores. The experimental results highlighted that our FL-based TRN achieved an mAP of 40.0% in decentralized settings, closely matching the 40.1% in centralized configurations. Notably, the model excelled in detecting complex driving maneuvers, with mAPs of 80.7% for intersection passing and 78.1% for right turns. These outcomes affirm the model’s accuracy in action localization and identification. The system showed significant scalability and adaptability, maintaining robust performance across increased client device counts. The integration of a temporal decoder enabled predictions of future actions up to 2 s ahead, enhancing the responsiveness. Our research advances intelligent vehicle technology, promoting safety and efficiency while maintaining strict privacy standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于联合学习的时序递归网络在智能车辆中进行隐私保护型实时动作检测
本研究采用基于联合学习(FL)的时序递归网络(TRN),为智能车辆的实时行动检测引入了一种保护隐私的方法。这种方法使边缘设备能够独立训练模型,通过消除中央数据整合来提高数据隐私性和可扩展性。我们基于 FL 的时间递归网络能有效捕捉时间依赖性,高精度地预测未来行动。在本田硬盘(Honda HDD)和电视系列(TVSeries)数据集上进行的广泛测试表明,无论是在集中式还是分散式环境中,我们的 TRN 都具有强大的性能,平均精度(mAP)得分也很有竞争力。实验结果表明,我们基于 FL 的 TRN 在分散设置中的 mAP 达到了 40.0%,与集中配置中的 40.1% 相差无几。值得注意的是,该模型在检测复杂驾驶动作方面表现出色,路口通过和右转的 mAP 分别为 80.7% 和 78.1%。这些结果肯定了模型在动作定位和识别方面的准确性。该系统具有显著的可扩展性和适应性,在客户端设备数量增加的情况下仍能保持强劲的性能。时间解码器的集成使系统能够预测未来行动,最长可提前 2 秒,从而提高了响应速度。我们的研究推动了智能汽车技术的发展,在提高安全性和效率的同时,也维护了严格的隐私标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations RETRACTED: Liu et al. Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties. Electronics 2023, 12, 829 The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy—A Case Report Image Databases with Features Augmented with Singular-Point Shapes to Enhance Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1