Ciro J. A. Macedo, Elton V. Dias, C. B. Both, Kleber V. Cardoso
{"title":"FramCo: Frame corrupted detection for the Open RAN intelligent controller to assist UAV-based mission-critical operations","authors":"Ciro J. A. Macedo, Elton V. Dias, C. B. Both, Kleber V. Cardoso","doi":"10.5753/jisa.2024.4036","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) and communication systems are fundamental elements in Mission Critical services, such as Search and Rescue (SAR) operations. UAVs can fly over an area, collect high-resolution video information, and transmit it back to a ground base station to identify victims through a Deep Neural Network object detection model. However, instabilities in the communication infrastructure can compromise SAR operations. For example, if one or more transmitted data packets fail to arrive at their destination, the high-resolution video frames can be distorted, degrading the application performance. In this article, we explore the relevance of computer vision application information, complementing the functionalities of Radio Access Network Intelligent Controllers for managing and orchestrating network components, through FramCo - a frame corrupted detection based on EfficientNet. Another contribution from this article is an architectural element that explores the components of the Open Radio Access Network (O-RAN) standard specification, with an assessment of a complex use case that explores new market trends, such as SAR operations assisted by UAV-based computer vision. The experimental results indicate that the proposed architectural element can act as an external trigger, integrated into the O-RAN cognitive control loop, significantly improving the performance of applications with sensitive Key Performance Indicators (KPIs).","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jisa.2024.4036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned Aerial Vehicles (UAVs) and communication systems are fundamental elements in Mission Critical services, such as Search and Rescue (SAR) operations. UAVs can fly over an area, collect high-resolution video information, and transmit it back to a ground base station to identify victims through a Deep Neural Network object detection model. However, instabilities in the communication infrastructure can compromise SAR operations. For example, if one or more transmitted data packets fail to arrive at their destination, the high-resolution video frames can be distorted, degrading the application performance. In this article, we explore the relevance of computer vision application information, complementing the functionalities of Radio Access Network Intelligent Controllers for managing and orchestrating network components, through FramCo - a frame corrupted detection based on EfficientNet. Another contribution from this article is an architectural element that explores the components of the Open Radio Access Network (O-RAN) standard specification, with an assessment of a complex use case that explores new market trends, such as SAR operations assisted by UAV-based computer vision. The experimental results indicate that the proposed architectural element can act as an external trigger, integrated into the O-RAN cognitive control loop, significantly improving the performance of applications with sensitive Key Performance Indicators (KPIs).