Efficacy of machine learning algorithms versus conventional risk assessment tools in predicting acute kidney injury: a systematic review

Joyce Aillyn de Vera Alvarado, Arahi Gabriela Cueller Ocampo, Mateo Daniel Fabara Vera, Jessica Lisseth Egas Leiva, Fabian Ernesto Basurto Vera, Arahi Salomé Espinosa Gualotuña, Nadia Fernanda Quinatoa Chamorro
{"title":"Efficacy of machine learning algorithms versus conventional risk assessment tools in predicting acute kidney injury: a systematic review","authors":"Joyce Aillyn de Vera Alvarado, Arahi Gabriela Cueller Ocampo, Mateo Daniel Fabara Vera, Jessica Lisseth Egas Leiva, Fabian Ernesto Basurto Vera, Arahi Salomé Espinosa Gualotuña, Nadia Fernanda Quinatoa Chamorro","doi":"10.46981/sfjhv5n3-002","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the efficacy of machine learning (ML) algorithms and compared them to conventional risk assessment tools in predicting acute kidney injury (AKI). Our evaluation encompassed a diverse array of ML models such as logistic regression, random forests, and neural networks and each model is evaluated against traditional risk assessment techniques. We documented key performance metrics such as accuracy, sensitivity, specificity, and overall predictive performances of previous studies and trials. Preliminary results reveal a notable superiority of ML algorithms over conventional tools, particularly in terms of accuracy and sensitivity. Our findings show the potential of ML models has enhanced early detection and intervention strategies for AKI and are proven a more effective approach to risk prediction. By leveraging the strengths of these innovative algorithms our healthcare providers can potentially improve patient outcomes through more precise and timely assessments. This study shows how incorporating machine learning (ML) technologies into clinical practice can change the way we identify and manage acute kidney injury (AKI) risks. It's important to further investigate how these algorithms can be practically implemented in different clinical settings to validate their effectiveness.","PeriodicalId":138058,"journal":{"name":"South Florida Journal of Health","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Florida Journal of Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46981/sfjhv5n3-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the efficacy of machine learning (ML) algorithms and compared them to conventional risk assessment tools in predicting acute kidney injury (AKI). Our evaluation encompassed a diverse array of ML models such as logistic regression, random forests, and neural networks and each model is evaluated against traditional risk assessment techniques. We documented key performance metrics such as accuracy, sensitivity, specificity, and overall predictive performances of previous studies and trials. Preliminary results reveal a notable superiority of ML algorithms over conventional tools, particularly in terms of accuracy and sensitivity. Our findings show the potential of ML models has enhanced early detection and intervention strategies for AKI and are proven a more effective approach to risk prediction. By leveraging the strengths of these innovative algorithms our healthcare providers can potentially improve patient outcomes through more precise and timely assessments. This study shows how incorporating machine learning (ML) technologies into clinical practice can change the way we identify and manage acute kidney injury (AKI) risks. It's important to further investigate how these algorithms can be practically implemented in different clinical settings to validate their effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法与传统风险评估工具在预测急性肾损伤方面的功效:系统综述
在这项研究中,我们调查了机器学习(ML)算法的功效,并将其与传统风险评估工具在预测急性肾损伤(AKI)方面进行了比较。我们的评估涵盖了逻辑回归、随机森林和神经网络等多种 ML 模型,并将每个模型与传统的风险评估技术进行了对比。我们记录了关键的性能指标,如准确性、灵敏度、特异性以及以往研究和试验的总体预测性能。初步结果显示,ML 算法明显优于传统工具,尤其是在准确性和灵敏度方面。我们的研究结果表明,ML 模型具有增强 AKI 早期检测和干预策略的潜力,并被证明是一种更有效的风险预测方法。通过利用这些创新算法的优势,我们的医疗服务提供者可以通过更精确、更及时的评估来改善患者的预后。这项研究表明,将机器学习(ML)技术融入临床实践可以改变我们识别和管理急性肾损伤(AKI)风险的方式。重要的是要进一步研究如何在不同的临床环境中实际应用这些算法,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficacy of machine learning algorithms versus conventional risk assessment tools in predicting acute kidney injury: a systematic review Modelo de investigación y comunicación de políticas públicas de salud Influência da condição periodontal no perfil lipídico de pacientes diagnosticados com infarto agudo do miocárdio The haemoglobin levels of patients with prostate cancer treated with radical radiotherapy Prevalencia de hipertensión arterial en pacientes jóvenes de una unidad de medicina familiar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1