Cellular communication network 1 promotes CASP2 mRNA expression but suppresses its protein translation in esophageal adenocarcinoma

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Journal of Cell Communication and Signaling Pub Date : 2024-07-17 DOI:10.1002/ccs3.12046
Ruize Xu, Zhenyu Jiang, Xianmei Meng, Lingling Xing, Wula Aladan, Baoxing Chi, Tong Dang, Jianyuan Chai
{"title":"Cellular communication network 1 promotes CASP2 mRNA expression but suppresses its protein translation in esophageal adenocarcinoma","authors":"Ruize Xu,&nbsp;Zhenyu Jiang,&nbsp;Xianmei Meng,&nbsp;Lingling Xing,&nbsp;Wula Aladan,&nbsp;Baoxing Chi,&nbsp;Tong Dang,&nbsp;Jianyuan Chai","doi":"10.1002/ccs3.12046","DOIUrl":null,"url":null,"abstract":"<p>Induction of apoptosis in tumor cells is one of the best ways to cure cancer. While most apoptosis requires a chain of caspase activation, CASP2 can do this all by itself. The matricellular protein cellular communication network 1 (CCN1) is known for supporting some cancer growth but suppressing others. Esophageal adenocarcinoma (EAC) belongs to the latter. CCN1 is capable of inducing TRAIL-mediated apoptosis in EAC cells. This study found that CCN1 upregulated CASP2 transcription but not its translation in EAC cells because, on one hand, CCN1 downregulated p16 and p21, which increased RB1 phosphorylation allowing E2F1 to transcribe more CASP2 mRNA, on the other hand, CCN1 also upregulated HuR, which is bound to CASP2 mRNA species and blocked its protein translation. As a result, CASP2 contributed nothing to CCN1-induced EAC cell apoptosis. On the contrary, CCN1 promoted CASP3, not only in its transcription but also in its translation and activation, which established the basis for CCN1-induced EAC cell apoptosis.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"18 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.12046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.12046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Induction of apoptosis in tumor cells is one of the best ways to cure cancer. While most apoptosis requires a chain of caspase activation, CASP2 can do this all by itself. The matricellular protein cellular communication network 1 (CCN1) is known for supporting some cancer growth but suppressing others. Esophageal adenocarcinoma (EAC) belongs to the latter. CCN1 is capable of inducing TRAIL-mediated apoptosis in EAC cells. This study found that CCN1 upregulated CASP2 transcription but not its translation in EAC cells because, on one hand, CCN1 downregulated p16 and p21, which increased RB1 phosphorylation allowing E2F1 to transcribe more CASP2 mRNA, on the other hand, CCN1 also upregulated HuR, which is bound to CASP2 mRNA species and blocked its protein translation. As a result, CASP2 contributed nothing to CCN1-induced EAC cell apoptosis. On the contrary, CCN1 promoted CASP3, not only in its transcription but also in its translation and activation, which established the basis for CCN1-induced EAC cell apoptosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞通讯网络 1 促进食管腺癌中 CASP2 mRNA 的表达,但抑制其蛋白翻译
诱导肿瘤细胞凋亡是治疗癌症的最佳方法之一。大多数细胞凋亡都需要一连串的 Caspase 激活,而 CASP2 却能独自完成这项工作。众所周知,母细胞蛋白细胞通讯网络 1(CCN1)支持某些癌症的生长,但却抑制另一些癌症的生长。食管腺癌(EAC)就属于后者。CCN1 能够诱导 EAC 细胞在 TRAIL 介导下凋亡。本研究发现,CCN1能上调EAC细胞中CASP2的转录,但不能上调其翻译,这是因为一方面CCN1能下调p16和p21,从而增加RB1的磷酸化,使E2F1能转录更多的CASP2 mRNA;另一方面,CCN1还能上调HuR,HuR与CASP2 mRNA结合,阻止其蛋白质翻译。因此,CASP2 对 CCN1 诱导的 EAC 细胞凋亡没有任何作用。相反,CCN1 不仅促进了 CASP3 的转录,还促进了其翻译和活化,这为 CCN1 诱导 EAC 细胞凋亡奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
期刊最新文献
Tert-butyl hydroperoxide induces trabecular meshwork cells injury through ferroptotic cell death Report on the 12th international workshop on the CCN family of genes, Oslo, June 20–23, 2024 Association for research on biosignaling and communication first world conference on cellular communication and signaling CD99 contributes to the EWS::FLI1 transcriptome by specifically affecting FOXM1-targets involved in the G2/M cell cycle phase, thus influencing the Ewing sarcoma genetic landscape Elevated reactive aggression in forebrain-specific Ccn2 knockout mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1