Skin Cancer Diagnosis with a Customized CNN Model using Deep Learning Approaches

Kiran Likhar, Dr. Sonali Ridhorkar
{"title":"Skin Cancer Diagnosis with a Customized CNN Model using Deep Learning Approaches","authors":"Kiran Likhar, Dr. Sonali Ridhorkar","doi":"10.52783/cana.v31.1016","DOIUrl":null,"url":null,"abstract":"Medical imaging has a significant challenge in accurately classifying skin lesions into benign and malignant classifications. To solve this issue, we have developed a technique that utilizes a custom convolutional neural network classifier with a support vector machine. Our customized CNN architecture is designed to address the core issue of skin cancer categorization. DenseNet121, DenseNet201, InceptionV3, InceptionResNetV2, MobileNet, ResNet50V2, ResNet101, VGG16, VGG19, and Xception are among the most prominent pre-trained models evaluated in our study. The customized CNN exceeds existing models on an average basis, displaying greater accuracy, recall, precision, and F1-Score for both benign and malignant cases. This technique has significant prospects for enhancing early skin cancer diagnosis, perhaps leading to better patient results and more efficient medical treatments.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Medical imaging has a significant challenge in accurately classifying skin lesions into benign and malignant classifications. To solve this issue, we have developed a technique that utilizes a custom convolutional neural network classifier with a support vector machine. Our customized CNN architecture is designed to address the core issue of skin cancer categorization. DenseNet121, DenseNet201, InceptionV3, InceptionResNetV2, MobileNet, ResNet50V2, ResNet101, VGG16, VGG19, and Xception are among the most prominent pre-trained models evaluated in our study. The customized CNN exceeds existing models on an average basis, displaying greater accuracy, recall, precision, and F1-Score for both benign and malignant cases. This technique has significant prospects for enhancing early skin cancer diagnosis, perhaps leading to better patient results and more efficient medical treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习方法的定制 CNN 模型诊断皮肤癌
医学成像在准确地将皮肤病变分为良性和恶性分类方面面临巨大挑战。为了解决这个问题,我们开发了一种技术,利用支持向量机定制卷积神经网络分类器。我们定制的卷积神经网络架构旨在解决皮肤癌分类的核心问题。DenseNet121、DenseNet201、InceptionV3、InceptionResNetV2、MobileNet、ResNet50V2、ResNet101、VGG16、VGG19 和 Xception 是我们研究中评估过的最突出的预训练模型。定制的 CNN 在平均水平上超过了现有的模型,在良性和恶性病例中都显示出更高的准确度、召回率、精确度和 F1-Score。这项技术在加强早期皮肤癌诊断方面前景广阔,或许能为患者带来更好的治疗效果和更有效的医疗手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1