Soil respiration and organic carbon changes along a chronosequence of Pinus nigra forest stands

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2024-07-17 DOI:10.15376/biores.19.3.6095-6119
Miraç Aydın, Ashraf Anwar Rages
{"title":"Soil respiration and organic carbon changes along a chronosequence of Pinus nigra forest stands","authors":"Miraç Aydın, Ashraf Anwar Rages","doi":"10.15376/biores.19.3.6095-6119","DOIUrl":null,"url":null,"abstract":"Understanding the trajectory of changes in soil respiration (Rs) and soil organic carbon (SOC) with stand ages of the black pine (Pinus nigra Arnold) forest is essential for forest management and carbon budget estimates. In this research, changes of Rs and SOC were studied with respect to stand age in a chronosequence of three age classes of P. nigra plantations consisting of young (0 to 10-year-olds), middle-aged (11- to 20-year-olds), and pre-mature (35- to 45-year-olds) forest stands. Rs rates, soil temperature, and soil moisture were measured using an automated dynamic survey chamber (Li-8100A) for a year, encompassing summer, fall, winter, and spring seasons. Mean Rs significantly increased from young- to middle-aged and then stabilized, with effluxes ranging from 2.46 to 2.94 µmol CO2 m-2 s-1. Forest litter significantly increased with stand age, but not the SOC in the mineral soil layers. The Rs showed a positive correlation with soil temperature (0.77) and air temperature (0.75) but not with soil moisture (-0.43). The present results highlight the importance of stand age in assessing carbon budget and provide essential information for forest managers and stakeholders in evaluating the potential of P. nigra forests as tools for carbon sequestration and mitigating global warming impacts.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.3.6095-6119","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the trajectory of changes in soil respiration (Rs) and soil organic carbon (SOC) with stand ages of the black pine (Pinus nigra Arnold) forest is essential for forest management and carbon budget estimates. In this research, changes of Rs and SOC were studied with respect to stand age in a chronosequence of three age classes of P. nigra plantations consisting of young (0 to 10-year-olds), middle-aged (11- to 20-year-olds), and pre-mature (35- to 45-year-olds) forest stands. Rs rates, soil temperature, and soil moisture were measured using an automated dynamic survey chamber (Li-8100A) for a year, encompassing summer, fall, winter, and spring seasons. Mean Rs significantly increased from young- to middle-aged and then stabilized, with effluxes ranging from 2.46 to 2.94 µmol CO2 m-2 s-1. Forest litter significantly increased with stand age, but not the SOC in the mineral soil layers. The Rs showed a positive correlation with soil temperature (0.77) and air temperature (0.75) but not with soil moisture (-0.43). The present results highlight the importance of stand age in assessing carbon budget and provide essential information for forest managers and stakeholders in evaluating the potential of P. nigra forests as tools for carbon sequestration and mitigating global warming impacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑松林林分年代序列的土壤呼吸作用和有机碳变化
了解黑松(Pinus nigra Arnold)林的土壤呼吸作用(Rs)和土壤有机碳(SOC)随林分年龄的变化轨迹对于森林管理和碳预算估算至关重要。本研究对黑松人工林的三个龄级(幼林(0 至 10 年生)、中龄林(11 至 20 年生)和早熟林(35 至 45 年生))中林分年龄的 Rs 和 SOC 变化进行了研究。使用自动动态测量室(Li-8100A)测量了一年的 Rs 率、土壤温度和土壤湿度,包括夏季、秋季、冬季和春季。平均 Rs 从幼年到中年显著增加,然后趋于稳定,流出量为 2.46 至 2.94 µmol CO2 m-2 s-1。森林枯落物随着林分年龄的增加而明显增加,但矿质土壤层中的 SOC 却没有增加。Rs 与土壤温度(0.77)和空气温度(0.75)呈正相关,但与土壤湿度(-0.43)不相关。本研究结果强调了林分年龄在评估碳预算中的重要性,并为森林管理者和利益相关者评估黑叶桉森林作为碳固存工具和减缓全球变暖影响的潜力提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Integrating Kansei engineering with hesitant fuzzy quality function deployment for rosewood furniture design Free drying shrinkage performance of Pinus sylvestris L. under different temperature and humidity conditions Biomass analysis of industrial hemp “Felina 32” and the influence of plant height on its quality Optimizing the extraction of Sasa quelpaertensis Nakai to develop natural cosmetics with antioxidant and whitening activities Voxel-based modular architectural design strategy toward autonomous architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1