SI/GE Quantum Dot Channel FETs for Multi-Bit Computing

F. Jain, R. Gudlavalleti, J. Chandy, E. Heller
{"title":"SI/GE Quantum Dot Channel FETs for Multi-Bit Computing","authors":"F. Jain, R. Gudlavalleti, J. Chandy, E. Heller","doi":"10.1142/s0129156424400767","DOIUrl":null,"url":null,"abstract":"This paper presents quantum dot channel (QDC) FETs in quantum wire and coupled quantum dot configurations for cryogenic operation with multi-state operation. It also describes gate-all-around (GAA) quantum dot channel (QDC) FETs that exhibit potential multi-state characteristics at room temperature. FETs with cladded Si and Ge quantum dot layers as a transport channel have been fabricated. The formation of a quantum dot superlattice (QDSL) when SiOx-cladded Si and/or GeOx-cladded Ge quantum dots (QD) are assembled results in mini-energy sub-bands in the conduction and valence band. The intra-mini-energy band transitions results in significant changes in the drain current when gate and/or drain voltages are varied. This novel feature provides a pathway for 16-/32-state logic in CMOS-X configuration. The gate-defined Si quantum dot FETs, comprising of tunnel barrier coupled, have been reported for quantum computing at cryogenic temperatures.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents quantum dot channel (QDC) FETs in quantum wire and coupled quantum dot configurations for cryogenic operation with multi-state operation. It also describes gate-all-around (GAA) quantum dot channel (QDC) FETs that exhibit potential multi-state characteristics at room temperature. FETs with cladded Si and Ge quantum dot layers as a transport channel have been fabricated. The formation of a quantum dot superlattice (QDSL) when SiOx-cladded Si and/or GeOx-cladded Ge quantum dots (QD) are assembled results in mini-energy sub-bands in the conduction and valence band. The intra-mini-energy band transitions results in significant changes in the drain current when gate and/or drain voltages are varied. This novel feature provides a pathway for 16-/32-state logic in CMOS-X configuration. The gate-defined Si quantum dot FETs, comprising of tunnel barrier coupled, have been reported for quantum computing at cryogenic temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多比特计算的 SI/GE 量子点沟道场效应晶体管
本文介绍了量子线和耦合量子点配置的量子点沟道 (QDC) 场效应晶体管,可在低温条件下实现多态运行。本文还介绍了在室温下具有潜在多态特性的全栅极(GAA)量子点沟道(QDC)场效应晶体管。研究人员制作了以硅和锗量子点层作为传输通道的场效应晶体管。在硅氧化物包覆硅和/或 Ge 氧化物包覆 Ge 量子点 (QD) 时形成的量子点超晶格 (QDSL) 会在导带和价带中产生迷你能带。当栅电压和/或漏极电压变化时,小能带内的转变会导致漏极电流发生显著变化。这一新颖特性为 CMOS-X 配置中的 16/32 态逻辑提供了途径。据报道,由隧道势垒耦合组成的栅极定义硅量子点 FET 可用于低温条件下的量子计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of High Speed Electronics and Systems
International Journal of High Speed Electronics and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.60
自引率
0.00%
发文量
22
期刊介绍: Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.
期刊最新文献
Electrical Equipment Knowledge Graph Embedding Using Language Model with Self-learned Prompts Evaluation of Dynamic and Static Balance Ability of Athletes Based on Computer Vision Technology Analysis of Joint Injury Prevention in Basketball Overload Training Based on Adjustable Embedded Systems A Comprehensive Study and Comparison of 2-Bit 7T–10T SRAM Configurations with 4-State CMOS-SWS Inverters Complete Ensemble Empirical Mode Decomposition with Adaptive Noise to Extract Deep Information of Bearing Fault in Steam Turbines via Deep Belief Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1