A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2024-07-10 DOI:10.1007/s11708-024-0950-8
Jing Xue, Zhenlin Chen, Yuchao Zhang, Jincai Zhao
{"title":"A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction","authors":"Jing Xue,&nbsp;Zhenlin Chen,&nbsp;Yuchao Zhang,&nbsp;Jincai Zhao","doi":"10.1007/s11708-024-0950-8","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity, which is most appealing especially in chemical reactions with multiple products, such as CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO2RR remains few and far between. Herein, the fundamentals of localized surface plasmonic resonance (LSPR) excitation and the properties of typical plasmonic metals (including Au, Ag, and Cu) are retrospected. Subsequently, the potential mechanisms of plasmonic effects (such as hot carrier effects and photothermal effects) on the reaction performance in the field of plasmon-assisted electrocatalytic CO<sub>2</sub>RR are summarized, which provides directions for the future development of this field. It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO<sub>2</sub>RR while more <i>in situ</i> techniques are essential to further clarify the inner mechanisms.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"399 - 417"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0950-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity, which is most appealing especially in chemical reactions with multiple products, such as CO2 reduction reaction (CO2RR). However, a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO2RR remains few and far between. Herein, the fundamentals of localized surface plasmonic resonance (LSPR) excitation and the properties of typical plasmonic metals (including Au, Ag, and Cu) are retrospected. Subsequently, the potential mechanisms of plasmonic effects (such as hot carrier effects and photothermal effects) on the reaction performance in the field of plasmon-assisted electrocatalytic CO2RR are summarized, which provides directions for the future development of this field. It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO2RR while more in situ techniques are essential to further clarify the inner mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化二氧化碳还原中的等离子体活性和选择性增强综述
利用质子效应辅助电化学反应在调整反应活性和产物选择性方面具有巨大潜力,尤其是在二氧化碳还原反应(CO2RR)等具有多种产物的化学反应中最有吸引力。然而,有关等离子体辅助电催化 CO2RR 的发展和基本机制的全面综述仍然少之又少。本文回顾了局部表面等离子体共振(LSPR)激发的基本原理和典型等离子体金属(包括金、银和铜)的特性。随后,总结了等离子效应(如热载流子效应和光热效应)对等离子体辅助电催化 CO2RR 领域反应性能的潜在影响机制,为该领域的未来发展提供了方向。结论是,质子催化剂在提高 CO2RR 方面表现出了潜在的能力,而更多的原位技术对于进一步阐明其内在机制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1