{"title":"Role of Fe/Mn elements tuning in the shock dynamics of CoCrNi-based alloy","authors":"","doi":"10.1016/j.ijmecsci.2024.109585","DOIUrl":null,"url":null,"abstract":"<div><p>Recent researches on concentrated solid solutions have emphasized the role of various solute interactions in determining anomalous dislocation core and plastic deformation. However, the influence path of element tuning under extreme conditions is still unclear. Here, we investigated shock-induced deformation and fracture in CoCrNi-based multi-principal element alloys (MPEAs) tuned by Fe/Mn elements using large-scale molecular dynamics simulations. It was found that Fe/Mn elements could reduce the defect nucleation barrier and improve the plastic deformability. When single-element tuning is applied, the Mn element significantly reduces the production of dislocations, favoring more phase transitions from FCC to BCC or amorphous phase. The results show that Mn significantly reduces the Hugoniot elastic limit (HEL) and spall strength, while the addition of Fe element to CoCrNiMn can alleviate this effect by reducing the degree of lattice distortion. Specially, we analyzed the relationship between void nucleation and shock wave propagation, and explained the single-negative-pressure-zone nucleation as well as complex double-negative-pressure-zone nucleation phenomena. Empirical equations for the spall strength of CoCrNi-based MPEAs adjusted by Fe/Mn elements were established. This work demonstrates a potential strategy for elemental tuning to tailor the mechanical properties of polymorphism in MPEAs.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400626X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent researches on concentrated solid solutions have emphasized the role of various solute interactions in determining anomalous dislocation core and plastic deformation. However, the influence path of element tuning under extreme conditions is still unclear. Here, we investigated shock-induced deformation and fracture in CoCrNi-based multi-principal element alloys (MPEAs) tuned by Fe/Mn elements using large-scale molecular dynamics simulations. It was found that Fe/Mn elements could reduce the defect nucleation barrier and improve the plastic deformability. When single-element tuning is applied, the Mn element significantly reduces the production of dislocations, favoring more phase transitions from FCC to BCC or amorphous phase. The results show that Mn significantly reduces the Hugoniot elastic limit (HEL) and spall strength, while the addition of Fe element to CoCrNiMn can alleviate this effect by reducing the degree of lattice distortion. Specially, we analyzed the relationship between void nucleation and shock wave propagation, and explained the single-negative-pressure-zone nucleation as well as complex double-negative-pressure-zone nucleation phenomena. Empirical equations for the spall strength of CoCrNi-based MPEAs adjusted by Fe/Mn elements were established. This work demonstrates a potential strategy for elemental tuning to tailor the mechanical properties of polymorphism in MPEAs.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.