{"title":"Enhanced bone matrix formation through a dense lamellar scaffold of chitosan, collagen type I, and hyaluronic acid","authors":"Gabrielle Christine Bonetti Sallum , Catharina Marques Sacramento , Thais Alves , Patrícia Lius Melo Alves , Angela Faustino Jozala , Denise Grotto , Marco Vinícius Chaud , Norberto Aranha , Karina Gonzales Silvério","doi":"10.1016/j.carpta.2024.100549","DOIUrl":null,"url":null,"abstract":"<div><p>This <em>in vitro</em> study aimed to assess the biocompatibility and osteogenic inducing properties of a new scaffold composed of chitosan, collagen type I, and hyaluronic acid. For <em>in vitro</em> assays, pre-osteoblastic immortalized cells were cultivated in standard medium (SD) and osteogenic medium (OM) in the following groups: a) Control (C) – cells cultured directly on the polystyrene plate, and b) Chitosan + Collagen type I + Hyaluronic Acid (CH + COL + HA) - cells cultured in a scaffold produced by the association of type I collagen, chitosan and hyaluronic acid. Cells in CH+COL+ HA scaffold presented metabolic activity similar to the control group. After 14 days, the CH+ COL+ HA scaffold induced a higher mineral nodule deposition compared than the control group, regardless of the cultured condition (SD or OM medium). In addition, the CH + COL + HA scaffold itself increased of the alkaline phosphatase activity and mRNA levels for <em>Runx2</em> and <em>Ocn</em> genes, which occurred earlier than control group. Based on the results, it is possible to conclude that the dense lamellar scaffold composed of CH/COL (type I)/HA stimulated osteogenic phenotype maturation of cells and can be a promising material for future bone regenerative approaches.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100549"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924001294/pdfft?md5=7f38b5d6d84c6e4953dbafabda4aeb4e&pid=1-s2.0-S2666893924001294-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This in vitro study aimed to assess the biocompatibility and osteogenic inducing properties of a new scaffold composed of chitosan, collagen type I, and hyaluronic acid. For in vitro assays, pre-osteoblastic immortalized cells were cultivated in standard medium (SD) and osteogenic medium (OM) in the following groups: a) Control (C) – cells cultured directly on the polystyrene plate, and b) Chitosan + Collagen type I + Hyaluronic Acid (CH + COL + HA) - cells cultured in a scaffold produced by the association of type I collagen, chitosan and hyaluronic acid. Cells in CH+COL+ HA scaffold presented metabolic activity similar to the control group. After 14 days, the CH+ COL+ HA scaffold induced a higher mineral nodule deposition compared than the control group, regardless of the cultured condition (SD or OM medium). In addition, the CH + COL + HA scaffold itself increased of the alkaline phosphatase activity and mRNA levels for Runx2 and Ocn genes, which occurred earlier than control group. Based on the results, it is possible to conclude that the dense lamellar scaffold composed of CH/COL (type I)/HA stimulated osteogenic phenotype maturation of cells and can be a promising material for future bone regenerative approaches.
这项体外研究旨在评估由壳聚糖、I 型胶原蛋白和透明质酸组成的新型支架的生物相容性和成骨诱导特性。在体外试验中,前成骨细胞在标准培养基(SD)和成骨培养基(OM)中培养,分为以下几组:a)对照组(C)--细胞直接在聚苯乙烯板上培养;b)壳聚糖+I型胶原+透明质酸(CH+COL+HA)--细胞在由 I 型胶原、壳聚糖和透明质酸联合制成的支架中培养。CH+COL+ HA 支架中的细胞具有与对照组相似的代谢活性。14 天后,与对照组相比,无论培养条件如何(SD 或 OM 培养基),CH+ COL+ HA 支架都能诱导更多的矿物质结核沉积。此外,与对照组相比,CH + COL + HA 支架本身提高了碱性磷酸酶活性以及 Runx2 和 Ocn 基因的 mRNA 水平。根据以上结果,可以得出结论:由 CH/COL (I 型)/HA 组成的致密片状支架刺激了细胞的成骨表型成熟,可作为未来骨再生方法的一种有前途的材料。