TensorFlow Hydrodynamics Analysis for Ly-α Simulations

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-07-01 DOI:10.1016/j.ascom.2024.100858
J. Ding , B. Horowitz , Z. Lukić
{"title":"TensorFlow Hydrodynamics Analysis for Ly-α Simulations","authors":"J. Ding ,&nbsp;B. Horowitz ,&nbsp;Z. Lukić","doi":"10.1016/j.ascom.2024.100858","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the Python program THALAS (TensorFlow Hydrodynamics Analysis for Lyman-Alpha Simulations), which maps baryon fields (baryon density, temperature, and velocity) to Ly<span><math><mi>α</mi></math></span> optical depth fields in both real space and redshift space. Unlike previous Ly<span><math><mi>α</mi></math></span> codes, THALAS is fully differentiable, enabling a wide variety of potential applications for general analysis of hydrodynamical simulations and cosmological inference. To demonstrate THALAS’s capabilities, we apply it to the Ly<span><math><mi>α</mi></math></span> forest inversion problem: given a Ly<span><math><mi>α</mi></math></span> optical depth field, we reconstruct the corresponding real-space dark matter density field. Such applications are relevant to both cosmological and three-dimensional tomographic analyses of Lyman Alpha forest data.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100858"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000738","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the Python program THALAS (TensorFlow Hydrodynamics Analysis for Lyman-Alpha Simulations), which maps baryon fields (baryon density, temperature, and velocity) to Lyα optical depth fields in both real space and redshift space. Unlike previous Lyα codes, THALAS is fully differentiable, enabling a wide variety of potential applications for general analysis of hydrodynamical simulations and cosmological inference. To demonstrate THALAS’s capabilities, we apply it to the Lyα forest inversion problem: given a Lyα optical depth field, we reconstruct the corresponding real-space dark matter density field. Such applications are relevant to both cosmological and three-dimensional tomographic analyses of Lyman Alpha forest data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 Ly-α 模拟的 TensorFlow 流体动力学分析
我们介绍了 Python 程序 THALAS(TensorFlow Hydrodynamics Analysis for Lyman-Alpha Simulations),它将重子场(重子密度、温度和速度)映射到实际空间和红移空间的 Lyα 光学深度场。与以前的Lyα代码不同,THALAS是完全可微分的,因此可以广泛应用于流体力学模拟的一般分析和宇宙学推断。为了证明THALAS的能力,我们将其应用于Lyα森林反演问题:给定一个Lyα光学深度场,我们重建相应的真实空间暗物质密度场。这种应用与莱曼阿尔法森林数据的宇宙学和三维层析分析都有关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Parameterized Hubble parameter with observational constraints in fractal gravity Illuminating the Moon: Reconstruction of lunar terrain using photogrammetry, Neural Radiance Fields, and Gaussian Splatting Editorial Board A multi-stage machine learning-based method to estimate wind parameters from Hα lines of massive stars Semi-analytical computation of commensurate semimajor axes of resonant orbits including second-order gravitational perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1