Development and characterization of ss-DNA/RGO/MoS2 modified carbon paste electrode for highly sensitive detection of capecitabine

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2024-08-01 DOI:10.1016/j.sbsr.2024.100675
{"title":"Development and characterization of ss-DNA/RGO/MoS2 modified carbon paste electrode for highly sensitive detection of capecitabine","authors":"","doi":"10.1016/j.sbsr.2024.100675","DOIUrl":null,"url":null,"abstract":"<div><p>Capecitabine (CAP) is a chemotherapeutic agent used in cancer treatment, necessitating the development of sensitive and selective detection methods for its analysis in clinical samples. The present research utilized a simplified procedure for developing a novel electrochemical sensor based on a carbon paste electrode (CPE) modified with single-stranded DNA (ss-DNA), reduced graphene oxide (RGO), and molybdenum disulfide (MoS2). Unmodified (bare CPE) and modified (ss-DNA/RGO/MoS<sub>2</sub>/CPE) electrodes were characterized by scanning electron microscopy (SEM), EDX analysis, and cyclic voltammetry (CV). Characterization data confirm the good conductivity and electrocatalytic nature with more electrochemically active sites in ss-DNA/RGO/MoS<sub>2</sub>/CPE compared to bare CPE in the determination of CAP in real samples. Two linear ranges were obtained for CAP concentration within the ranges of 0.01–10.00 μM and 10.00–60.00 μM, with a detection limit of 0.0108 μM and a limit of quantification of 0.036 μM. The lower linear concentration range of 0.01–10.00 μM showed a sensitivity of 276.85 AM<sup>−1</sup> cm<sup>−2</sup>, while the range of 10–60 μM had a sensitivity of 5.88 AM<sup>−1</sup> cm<sup>−2</sup>. The performance of the modified electrode was tested in human serum samples, yielding satisfactory recovery results. The selectivity and practical ability of ss-DNA/RGO/MoS<sub>2</sub>/CPE to determine CAP in the presence of different interfering species were investigated, demonstrating the sensor's selective, reliable, and accurate response.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000576/pdfft?md5=b2828545dadebaf9dd658e8b24369e33&pid=1-s2.0-S2214180424000576-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Capecitabine (CAP) is a chemotherapeutic agent used in cancer treatment, necessitating the development of sensitive and selective detection methods for its analysis in clinical samples. The present research utilized a simplified procedure for developing a novel electrochemical sensor based on a carbon paste electrode (CPE) modified with single-stranded DNA (ss-DNA), reduced graphene oxide (RGO), and molybdenum disulfide (MoS2). Unmodified (bare CPE) and modified (ss-DNA/RGO/MoS2/CPE) electrodes were characterized by scanning electron microscopy (SEM), EDX analysis, and cyclic voltammetry (CV). Characterization data confirm the good conductivity and electrocatalytic nature with more electrochemically active sites in ss-DNA/RGO/MoS2/CPE compared to bare CPE in the determination of CAP in real samples. Two linear ranges were obtained for CAP concentration within the ranges of 0.01–10.00 μM and 10.00–60.00 μM, with a detection limit of 0.0108 μM and a limit of quantification of 0.036 μM. The lower linear concentration range of 0.01–10.00 μM showed a sensitivity of 276.85 AM−1 cm−2, while the range of 10–60 μM had a sensitivity of 5.88 AM−1 cm−2. The performance of the modified electrode was tested in human serum samples, yielding satisfactory recovery results. The selectivity and practical ability of ss-DNA/RGO/MoS2/CPE to determine CAP in the presence of different interfering species were investigated, demonstrating the sensor's selective, reliable, and accurate response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高灵敏度检测卡培他滨的ss-DNA/RGO/MoS2修饰碳浆电极的开发与表征
卡培他滨(CAP)是一种用于癌症治疗的化疗药物,因此有必要开发灵敏且具有选择性的检测方法来分析临床样本中的卡培他滨。本研究采用简化程序开发了一种新型电化学传感器,该传感器基于用单链 DNA(ss-DNA)、还原型氧化石墨烯(RGO)和二硫化钼(MoS2)修饰的碳浆电极(CPE)。通过扫描电子显微镜 (SEM)、EDX 分析和循环伏安法 (CV) 对未修饰(裸 CPE)和修饰(ss-DNA/RGO/MoS2/CPE)电极进行了表征。表征数据证实,在测定实际样品中的 CAP 时,ss-DNA/RGO/MoS2/CPE 与裸 CPE 相比具有良好的导电性和电催化性,且具有更多的电化学活性位点。CAP 浓度在 0.01-10.00 μM 和 10.00-60.00 μM 之间有两个线性范围,检出限为 0.0108 μM,定量限为 0.036 μM。在 0.01-10.00 μM 的较低线性浓度范围内,灵敏度为 276.85 AM-1 cm-2,而在 10-60 μM 的范围内,灵敏度为 5.88 AM-1 cm-2。在人体血清样品中测试了改良电极的性能,结果令人满意。研究了ss-DNA/RGO/MoS2/CPE 在不同干扰物存在下测定 CAP 的选择性和实用能力,证明了该传感器的选择性、可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Development and characterization of ss-DNA/RGO/MoS2 modified carbon paste electrode for highly sensitive detection of capecitabine Screen-printed carbon electrode functionalized with AuNPs-cysteamine self-assembled monolayers for enzymatic uric acid detection in non-invasive samples. A pioneering electrochemical sensor for the simultaneous determination of nitrofurantoin and furazolidone residues in food and municipal wastewater samples Tunable perfect meta-absorber with high sensitivity for refractive index sensing application Exploring nanotechnology in forensic investigations: Techniques, innovations, and future prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1