Straight sections of step edges on a NiAl(110) curved single crystal surface used to calculate an approximation of step formation energy

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-07-24 DOI:10.1016/j.susc.2024.122545
{"title":"Straight sections of step edges on a NiAl(110) curved single crystal surface used to calculate an approximation of step formation energy","authors":"","doi":"10.1016/j.susc.2024.122545","DOIUrl":null,"url":null,"abstract":"<div><p>Curved crystals may feature a smooth transition between different vicinal surfaces. Using one curved single crystal to study different vicinal surfaces requires less experimental time than using several single flat crystals. Here, we study step distributions on the (110) plane of a curved NiAl single-crystal surface, which consists of alternating Ni and Al atom rows. We use scanning tunneling microscopy under UHV conditions at room temperature and our home-built Python-based analysis script to obtain statistical information on kink and straight sections along step-edge distributions from STM images. We perform this analysis mainly to study this single crystal’s kink distributions and step termination We propose a new method to estimate the step formation energy based on step edge analysis and statistical mechanics. With this method, we find an approximation of the step formation energy for NiAl(110).</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824000967/pdfft?md5=549c2d6afa350cc1827a6642b3b374cf&pid=1-s2.0-S0039602824000967-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000967","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Curved crystals may feature a smooth transition between different vicinal surfaces. Using one curved single crystal to study different vicinal surfaces requires less experimental time than using several single flat crystals. Here, we study step distributions on the (110) plane of a curved NiAl single-crystal surface, which consists of alternating Ni and Al atom rows. We use scanning tunneling microscopy under UHV conditions at room temperature and our home-built Python-based analysis script to obtain statistical information on kink and straight sections along step-edge distributions from STM images. We perform this analysis mainly to study this single crystal’s kink distributions and step termination We propose a new method to estimate the step formation energy based on step edge analysis and statistical mechanics. With this method, we find an approximation of the step formation energy for NiAl(110).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于计算阶梯形成能量近似值的镍铝(110)弧形单晶表面阶梯边缘直线剖面图
曲面晶体可能具有不同临界表面之间平滑过渡的特点。与使用多个平面单晶体相比,使用一个曲面单晶体来研究不同的临界表面所需的实验时间更短。在此,我们研究了镍铝单晶曲面 (110) 平面上的阶跃分布,该曲面由交替排列的镍和铝原子组成。我们使用室温超高真空条件下的扫描隧道显微镜和自制的基于 Python 的分析脚本,从 STM 图像中获取阶梯边缘分布的扭结和直线部分的统计信息。我们提出了一种基于阶跃边分析和统计力学的估算阶跃形成能量的新方法。利用这种方法,我们找到了 NiAl(110) 的阶跃形成能近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando Adsorption and sensing performances of transition metal doped ZnO monolayer for CO and NO: A DFT study Fabrication of B-C-N nanosheets on Rh(111) from benzene – borazine mixtures Growth and electronic structure of the nodal line semimetal in monolayer Cu2Si on Cu(111) Step-by-step silicon carbide graphitisation process study in terms of time and temperature parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1