Ghadeer A.R.Y. Suaifan , Mayadah B. Shehadeh , Rula M. Darwish , Manar Alterify , Ward Abu Jbara , Fahid Abu Jbara , Nader Alaridah , Mohammed Zourob
{"title":"Magnetic beads-based nanozyme for portable colorimetric biosensing of Helicobacter pylori","authors":"Ghadeer A.R.Y. Suaifan , Mayadah B. Shehadeh , Rula M. Darwish , Manar Alterify , Ward Abu Jbara , Fahid Abu Jbara , Nader Alaridah , Mohammed Zourob","doi":"10.1016/j.biosx.2024.100517","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer continues to be a significant global health issue with one in six deaths linked to the disease despite advancements in cancer detection and treatment. Recently, <em>Helicobacter pylori</em> (<em>H. pylori</em>) was identified as a risk factor for cancer development. This gram-negative bacterium is associated with gastric conditions, including stomach cancer. Although the exact transmission methods of this bacterium are still unclear, studies suggest that waterborne transmission is possible. This study focuses on the development of a colorimetric nanomaterial-based paper biosensor for specific <em>H. pylori</em> detection using <em>H. pylori</em> extracellular proteases as biomarkers. The biosensor utilizes a unique substrate labeled with magnetic nanobeads and bound to a gold sensing platform. The biosensor's limit of detection (LOD) of 100 CFU/mL, selectivity, stability, and ability to detect <em>H. pylori</em> in clinical specimens were evaluated, demonstrating promising results in terms of sensitivity and specificity. In comparison to traditional methods, this biosensor offers advantages in simplicity and ease of use, making it appropriate for on-site detection in both environmental and clinical settings.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100517"},"PeriodicalIF":10.6100,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000815/pdfft?md5=2e76196d184154565915a1ec306f80c1&pid=1-s2.0-S2590137024000815-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer continues to be a significant global health issue with one in six deaths linked to the disease despite advancements in cancer detection and treatment. Recently, Helicobacter pylori (H. pylori) was identified as a risk factor for cancer development. This gram-negative bacterium is associated with gastric conditions, including stomach cancer. Although the exact transmission methods of this bacterium are still unclear, studies suggest that waterborne transmission is possible. This study focuses on the development of a colorimetric nanomaterial-based paper biosensor for specific H. pylori detection using H. pylori extracellular proteases as biomarkers. The biosensor utilizes a unique substrate labeled with magnetic nanobeads and bound to a gold sensing platform. The biosensor's limit of detection (LOD) of 100 CFU/mL, selectivity, stability, and ability to detect H. pylori in clinical specimens were evaluated, demonstrating promising results in terms of sensitivity and specificity. In comparison to traditional methods, this biosensor offers advantages in simplicity and ease of use, making it appropriate for on-site detection in both environmental and clinical settings.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.