Changjiang Liu , Hujun Li , Zhen Wang , Yong He , Guokai Zhang , Mingyang Wang
{"title":"Experimental and numerical simulation of the attenuation effect of blast shock waves in tunnels at different altitudes","authors":"Changjiang Liu , Hujun Li , Zhen Wang , Yong He , Guokai Zhang , Mingyang Wang","doi":"10.1016/j.dt.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion, which can damage personnel and equipment. Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics. The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation. Based on the experimental and numerical simulation results, a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established. The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition. In contrast, an increase in altitude accelerated the propagation speed of the shock wave in the tunnel. The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than 15%, the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%. The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"43 ","pages":"Pages 120-141"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221491472400165X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion, which can damage personnel and equipment. Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics. The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation. Based on the experimental and numerical simulation results, a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established. The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition. In contrast, an increase in altitude accelerated the propagation speed of the shock wave in the tunnel. The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than 15%, the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%. The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.