Yichen Zhang , Haoyue Han , Guangyan Huang , Tao Wang
{"title":"A three-dimensional coupled thermo-elastic-plastic phase field model for the brittle-ductile failure mode transition of metals","authors":"Yichen Zhang , Haoyue Han , Guangyan Huang , Tao Wang","doi":"10.1016/j.ijimpeng.2024.105062","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic brittle fracture and shear banding are two typical failure modes of metals, and the transformation of the brittle-ductile failure mode has been observed in the Kalthoff test. This paper establishes a thermo-elastic-plastic coupled three-dimensional phase field model to simulate brittle-ductile failure mode transition of metals. The expression for the variation of the Taylor-Quinney coefficient with stress triaxiality is adopted, and the critical energy release rate is automatically adjusted using the Taylor-Quinney coefficient. Then, the Kalthoff test is simulated using the proposed model. The brittle-ductile failure mode transformation phenomenon is reproduced, which agrees well with the experimental results. It can be well proved that impact velocity is crucial in determining the transition to failure mode. At low-velocity impact, the energy is insufficient to drive the plastic accumulation of the shear band, resulting in brittle tensile fracture. At high-velocity impact, the energy is sufficient to drive the formation of adiabatic shear bands, resulting in tensile shear failure. In addition, three-dimensional simulations show that the tip of the shear band exhibits a crescent-shaped non-two-dimensional extension state under finite thickness. This numerical framework provides a predictive tool to understand the evolution of the dynamic failure of metals under impact loading.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"193 ","pages":"Article 105062"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24001866","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic brittle fracture and shear banding are two typical failure modes of metals, and the transformation of the brittle-ductile failure mode has been observed in the Kalthoff test. This paper establishes a thermo-elastic-plastic coupled three-dimensional phase field model to simulate brittle-ductile failure mode transition of metals. The expression for the variation of the Taylor-Quinney coefficient with stress triaxiality is adopted, and the critical energy release rate is automatically adjusted using the Taylor-Quinney coefficient. Then, the Kalthoff test is simulated using the proposed model. The brittle-ductile failure mode transformation phenomenon is reproduced, which agrees well with the experimental results. It can be well proved that impact velocity is crucial in determining the transition to failure mode. At low-velocity impact, the energy is insufficient to drive the plastic accumulation of the shear band, resulting in brittle tensile fracture. At high-velocity impact, the energy is sufficient to drive the formation of adiabatic shear bands, resulting in tensile shear failure. In addition, three-dimensional simulations show that the tip of the shear band exhibits a crescent-shaped non-two-dimensional extension state under finite thickness. This numerical framework provides a predictive tool to understand the evolution of the dynamic failure of metals under impact loading.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications