{"title":"Trends and cycles during the COVID-19 pandemic period","authors":"Paulo Júlio , José R. Maria","doi":"10.1016/j.econmod.2024.106830","DOIUrl":null,"url":null,"abstract":"<div><p>We perform several trend-cycle decompositions through the lens of two unobserved components models, herein estimated for Portugal and the euro area. Our procedure copes with the COVID-19’s consequences by explicitly considering potentially larger second moments during that period. This is achieved through a set of pandemic-specific shocks affecting only the 2020–21 period and embedded into estimation through a piecewise linear Kalman filter. Our methodology generates negligible historical revisions in key smoothed variables when the sample period is expanded until 2021:4, since pandemic shocks absorb a great deal of data volatility with minimal impacts on filtered data revisions or estimated parameters. Furthermore, non-pandemic shock volatility remains largely unaffected by the pandemic period. Innovations affecting the cycle in our preferred model are the key propellers of GDP developments during the COVID-19 pandemic period.</p></div>","PeriodicalId":48419,"journal":{"name":"Economic Modelling","volume":"139 ","pages":"Article 106830"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264999324001871","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We perform several trend-cycle decompositions through the lens of two unobserved components models, herein estimated for Portugal and the euro area. Our procedure copes with the COVID-19’s consequences by explicitly considering potentially larger second moments during that period. This is achieved through a set of pandemic-specific shocks affecting only the 2020–21 period and embedded into estimation through a piecewise linear Kalman filter. Our methodology generates negligible historical revisions in key smoothed variables when the sample period is expanded until 2021:4, since pandemic shocks absorb a great deal of data volatility with minimal impacts on filtered data revisions or estimated parameters. Furthermore, non-pandemic shock volatility remains largely unaffected by the pandemic period. Innovations affecting the cycle in our preferred model are the key propellers of GDP developments during the COVID-19 pandemic period.
期刊介绍:
Economic Modelling fills a major gap in the economics literature, providing a single source of both theoretical and applied papers on economic modelling. The journal prime objective is to provide an international review of the state-of-the-art in economic modelling. Economic Modelling publishes the complete versions of many large-scale models of industrially advanced economies which have been developed for policy analysis. Examples are the Bank of England Model and the US Federal Reserve Board Model which had hitherto been unpublished. As individual models are revised and updated, the journal publishes subsequent papers dealing with these revisions, so keeping its readers as up to date as possible.