H. Madeira , L. Costecalde , M. Coret , A. Leygue , P.Y. Le Gac , M. Le Gall , E. Verron
{"title":"Data-Driven Identification unravels multiaxial mechanical response of a carbon-black filled elastomer during ageing","authors":"H. Madeira , L. Costecalde , M. Coret , A. Leygue , P.Y. Le Gac , M. Le Gall , E. Verron","doi":"10.1016/j.polymertesting.2024.108521","DOIUrl":null,"url":null,"abstract":"<div><p>Under environmental exposure, the mechanical properties of elastomers change due to ageing, all while enduring mechanical service loading conditions. The influence of ageing on the multiaxial mechanical response of elastomers remains an understudied question, lacking exploration in both experimental evidence and modelling proposals. The present study describes an experimental/numerical approach to characterize the multiaxial behaviour of elastomers with consideration of ageing. This technique associates complex experimental tests conducted with a hexapod device, with a Data-Driven Identification (DDI) algorithm. Practically, heterogeneous strain fields are measured by Digital Image Correlation (DIC), and the corresponding stress and energy fields are calculated by DDI. These fields are visualized through three-dimensional maps, encompassing kinematical quantities and strain energy density. These maps convincingly capture the stiffening induced by ageing, in different deformation modes. Finally, the coupling between ageing and multiaxiality is foregathered in a material database that can be fitted for further modelling purposes.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"137 ","pages":"Article 108521"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824001983/pdfft?md5=e8e0ceffd3aeb3dd17c9f3c4af637c7f&pid=1-s2.0-S0142941824001983-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824001983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Under environmental exposure, the mechanical properties of elastomers change due to ageing, all while enduring mechanical service loading conditions. The influence of ageing on the multiaxial mechanical response of elastomers remains an understudied question, lacking exploration in both experimental evidence and modelling proposals. The present study describes an experimental/numerical approach to characterize the multiaxial behaviour of elastomers with consideration of ageing. This technique associates complex experimental tests conducted with a hexapod device, with a Data-Driven Identification (DDI) algorithm. Practically, heterogeneous strain fields are measured by Digital Image Correlation (DIC), and the corresponding stress and energy fields are calculated by DDI. These fields are visualized through three-dimensional maps, encompassing kinematical quantities and strain energy density. These maps convincingly capture the stiffening induced by ageing, in different deformation modes. Finally, the coupling between ageing and multiaxiality is foregathered in a material database that can be fitted for further modelling purposes.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.