Data-Driven Identification unravels multiaxial mechanical response of a carbon-black filled elastomer during ageing

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Polymer Testing Pub Date : 2024-08-01 DOI:10.1016/j.polymertesting.2024.108521
H. Madeira , L. Costecalde , M. Coret , A. Leygue , P.Y. Le Gac , M. Le Gall , E. Verron
{"title":"Data-Driven Identification unravels multiaxial mechanical response of a carbon-black filled elastomer during ageing","authors":"H. Madeira ,&nbsp;L. Costecalde ,&nbsp;M. Coret ,&nbsp;A. Leygue ,&nbsp;P.Y. Le Gac ,&nbsp;M. Le Gall ,&nbsp;E. Verron","doi":"10.1016/j.polymertesting.2024.108521","DOIUrl":null,"url":null,"abstract":"<div><p>Under environmental exposure, the mechanical properties of elastomers change due to ageing, all while enduring mechanical service loading conditions. The influence of ageing on the multiaxial mechanical response of elastomers remains an understudied question, lacking exploration in both experimental evidence and modelling proposals. The present study describes an experimental/numerical approach to characterize the multiaxial behaviour of elastomers with consideration of ageing. This technique associates complex experimental tests conducted with a hexapod device, with a Data-Driven Identification (DDI) algorithm. Practically, heterogeneous strain fields are measured by Digital Image Correlation (DIC), and the corresponding stress and energy fields are calculated by DDI. These fields are visualized through three-dimensional maps, encompassing kinematical quantities and strain energy density. These maps convincingly capture the stiffening induced by ageing, in different deformation modes. Finally, the coupling between ageing and multiaxiality is foregathered in a material database that can be fitted for further modelling purposes.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"137 ","pages":"Article 108521"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824001983/pdfft?md5=e8e0ceffd3aeb3dd17c9f3c4af637c7f&pid=1-s2.0-S0142941824001983-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824001983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Under environmental exposure, the mechanical properties of elastomers change due to ageing, all while enduring mechanical service loading conditions. The influence of ageing on the multiaxial mechanical response of elastomers remains an understudied question, lacking exploration in both experimental evidence and modelling proposals. The present study describes an experimental/numerical approach to characterize the multiaxial behaviour of elastomers with consideration of ageing. This technique associates complex experimental tests conducted with a hexapod device, with a Data-Driven Identification (DDI) algorithm. Practically, heterogeneous strain fields are measured by Digital Image Correlation (DIC), and the corresponding stress and energy fields are calculated by DDI. These fields are visualized through three-dimensional maps, encompassing kinematical quantities and strain energy density. These maps convincingly capture the stiffening induced by ageing, in different deformation modes. Finally, the coupling between ageing and multiaxiality is foregathered in a material database that can be fitted for further modelling purposes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的识别技术揭示了碳黑填充弹性体在老化过程中的多轴机械响应
在环境暴露条件下,弹性体的机械性能会因老化而发生变化,同时还要承受机械负载条件。老化对弹性体多轴机械响应的影响仍然是一个研究不足的问题,在实验证据和建模建议方面都缺乏探索。本研究介绍了一种实验/数值方法,用于描述考虑了老化因素的弹性体多轴行为。该技术将使用六足装置进行的复杂实验测试与数据驱动识别(DDI)算法相结合。实际上,通过数字图像相关性(DIC)测量异质应变场,并通过 DDI 计算相应的应力场和能量场。这些场通过包含运动量和应变能量密度的三维地图可视化。这些图令人信服地捕捉到了不同变形模式下老化引起的僵化。最后,老化与多轴性之间的耦合关系被收集到一个材料数据库中,该数据库可用于进一步建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
期刊最新文献
Microdroplet pull-out testing: Significance of fiber fracture results Fabrication of advanced polyphenylene sulfide composites by in-situ grafting of sulfide silane and PCPA on glass fibers Classification of black plastic types by hyperspectral imaging based on long-wave infrared emission spectroscopy Investigation of the degradation behaviour of poly-L-lactic acid braided stents under real-time and accelerated conditions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1