{"title":"Novel antioxidant additive ENTAN molecule for animal production: Evaluation at the cellular level","authors":"Pamela Olivares-Ferretti , Ekaitz Maguregui , Viviana Chavez , Jorge Parodi","doi":"10.1016/j.ejbt.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Using cell lines to explore the function of organic compounds is fundamental in biotechnology. Evaluating new additives intended to improve animal production is challenging due to the complexity and uncertainty of in vivo testing. This study investigated the action of a compound with antioxidant properties using cells from terrestrial (LMH cells line) and aquatic vertebrates (CHSE-214).</p></div><div><h3>Results</h3><p>The results of our study provide reassuring evidence of the compound’s safety for use in animal production. The compound demonstrated no adverse effects on cell viability, indicating its potential for safe application. Furthermore, the compound’s antioxidant properties were evident, with a 100% recovery in both cell lines when exposed to hydrogen peroxide 0.1 mM. It also effectively reduced cellular ageing caused by metabolic processes, as measured by the TBARS formation in both cell lines, from 5 MDA µM/mg protein to 2.5 MDA µM/mg protein when used at 0.05 or 0.5 g/L. Notably, this action did not increase cell membrane oxidation, further supporting its safety profile.</p></div><div><h3>Conclusions</h3><p>These findings indicate that the compound has an antioxidant effect and can be used independently or in combination with metabolic stimulants in the diets of production animals. Applying this additive and its possible synergy with other compounds could help reduce oxidative stress and improve growth in animal production. The data generated in this study provide a solid basis for designing diets incorporating this additive to observe improvements in animal production based on activity observed at the cellular level.</p><p><strong>How to cite:</strong> Olivares- Ferretti P, Maguregui E, Chavez V, et al. Novel antioxidant additive ENTAN molecule for animal production: Evaluation at the cellular level. Electron J Biotechnol 2024;71. <span><span>https://doi.org/10.1016/j.ejbt.2024.07.001</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"71 ","pages":"Pages 57-62"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345824000216/pdfft?md5=4d676ad62e0d2e888e7139959573f92f&pid=1-s2.0-S0717345824000216-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345824000216","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Using cell lines to explore the function of organic compounds is fundamental in biotechnology. Evaluating new additives intended to improve animal production is challenging due to the complexity and uncertainty of in vivo testing. This study investigated the action of a compound with antioxidant properties using cells from terrestrial (LMH cells line) and aquatic vertebrates (CHSE-214).
Results
The results of our study provide reassuring evidence of the compound’s safety for use in animal production. The compound demonstrated no adverse effects on cell viability, indicating its potential for safe application. Furthermore, the compound’s antioxidant properties were evident, with a 100% recovery in both cell lines when exposed to hydrogen peroxide 0.1 mM. It also effectively reduced cellular ageing caused by metabolic processes, as measured by the TBARS formation in both cell lines, from 5 MDA µM/mg protein to 2.5 MDA µM/mg protein when used at 0.05 or 0.5 g/L. Notably, this action did not increase cell membrane oxidation, further supporting its safety profile.
Conclusions
These findings indicate that the compound has an antioxidant effect and can be used independently or in combination with metabolic stimulants in the diets of production animals. Applying this additive and its possible synergy with other compounds could help reduce oxidative stress and improve growth in animal production. The data generated in this study provide a solid basis for designing diets incorporating this additive to observe improvements in animal production based on activity observed at the cellular level.
How to cite: Olivares- Ferretti P, Maguregui E, Chavez V, et al. Novel antioxidant additive ENTAN molecule for animal production: Evaluation at the cellular level. Electron J Biotechnol 2024;71. https://doi.org/10.1016/j.ejbt.2024.07.001.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering