Improvement of natural fiber cement composite for roofing applications through addition of waste tire rubber: An investigation of the physical, mechanical, thermal, and acoustic properties
{"title":"Improvement of natural fiber cement composite for roofing applications through addition of waste tire rubber: An investigation of the physical, mechanical, thermal, and acoustic properties","authors":"Kanokon Hancharoen , Parames Kamhangrittirong , Pimsiree Suwanna","doi":"10.1016/j.clema.2024.100265","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a new type of natural fiber-rubber-cement (FRC) composite for roofing applications is presented. This composite was made with Portland cement, coated oil palm fibers, and modified waste tire rubber powders. The implementation of fiber coating and rubber modification methods has resulted in a more effective blending and binding of the fibers and rubber powders with the cement paste. This has notably improved the adhesion between the fibers and cement, as well as between the rubber powders and cement within the composite. The FRC composite demonstrated significantly lower water absorption and thermal conductivity, with reductions of 85% and 18%, respectively, compared to the fiber-cement (FC) composite lacking rubber powders. Additionally, the FRC composite exhibited improvements in flexural strength and noise reduction coefficient by 10% and 20%, respectively, in comparison to the FC composite. Thus, incorporating rubber powders can enhance the properties of the FC composite. Consequently, the FRC composite is proposed as a viable alternative roofing material suitable for use in energy-efficient buildings.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100265"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000492/pdfft?md5=01937450bf58fc7f3e2e578f54e976c3&pid=1-s2.0-S2772397624000492-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a new type of natural fiber-rubber-cement (FRC) composite for roofing applications is presented. This composite was made with Portland cement, coated oil palm fibers, and modified waste tire rubber powders. The implementation of fiber coating and rubber modification methods has resulted in a more effective blending and binding of the fibers and rubber powders with the cement paste. This has notably improved the adhesion between the fibers and cement, as well as between the rubber powders and cement within the composite. The FRC composite demonstrated significantly lower water absorption and thermal conductivity, with reductions of 85% and 18%, respectively, compared to the fiber-cement (FC) composite lacking rubber powders. Additionally, the FRC composite exhibited improvements in flexural strength and noise reduction coefficient by 10% and 20%, respectively, in comparison to the FC composite. Thus, incorporating rubber powders can enhance the properties of the FC composite. Consequently, the FRC composite is proposed as a viable alternative roofing material suitable for use in energy-efficient buildings.