Design and construction of bio carbon derived Bi2Fe4O9 nanocomposites sensor for clad modified optical fiber sensors for detection of ethanol gas

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-07-25 DOI:10.1016/j.chphi.2024.100686
K. Kokila , T. Sumathi , S. Kumaran , A. Gnanasekar , R. BoopathiRaja
{"title":"Design and construction of bio carbon derived Bi2Fe4O9 nanocomposites sensor for clad modified optical fiber sensors for detection of ethanol gas","authors":"K. Kokila ,&nbsp;T. Sumathi ,&nbsp;S. Kumaran ,&nbsp;A. Gnanasekar ,&nbsp;R. BoopathiRaja","doi":"10.1016/j.chphi.2024.100686","DOIUrl":null,"url":null,"abstract":"<div><p>Bio carbon (BC) derived Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> hybrid sensor was fabricated via sonochemical approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and N<sub>2</sub> adsorption-desorption were used to determine the structural, morphological and porosity characteristics, respectively. The materials' gas-sensing properties were evaluated using a clad-modified optical fiber sensor. The orthorhombic structure with Pbam space group of Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> confirmed by the relative diffraction pattern. All sharp intense diffracted patterns might be indexed based on the standard value ((JCPDS card No. 74-1098). Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrate those granular sheets with aggregated spherical shaped morphology of BC and Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>, respectively. The pristine Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> exhibits Raman modes at 378 cm<sup>−1</sup> and 617 cm<sup>−1</sup>, which is ascribed to the orthorhombic structure. The orthorhombic structure was already confirmed from XRD results. BFOG5 sample shows high SSA (107.5 m<sup>2</sup>/g) and pore size (38.4 nm), which is nearly 2.2 times greater than that of pristine Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (54.3 m<sup>2/g</sup> and 23.4 nm). Fiber optic sensor was fabricated and tested for ethanol gas with various gas concentrations (0–500 ppm). The sensitivity (defined as slope of fitted line) enhanced from 14.69 (count/%) for bare Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> to 33.94 (count/%) for Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>/BC (BFOG5). The response and recovery time was 25 s and 20 s for Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>/BC (BFOG5) sensor, which is higher than that of bare Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (42 s and 33 s). Our findings pave the way for a unique hybrid Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>/BC composite to be used in a highly sensitive C<sub>2</sub>H<sub>5</sub>OH gas sensor system at RT.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100686"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002305/pdfft?md5=20f70007ebabe19c475a271b64eb1ea7&pid=1-s2.0-S2667022424002305-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bio carbon (BC) derived Bi2Fe4O9 hybrid sensor was fabricated via sonochemical approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and N2 adsorption-desorption were used to determine the structural, morphological and porosity characteristics, respectively. The materials' gas-sensing properties were evaluated using a clad-modified optical fiber sensor. The orthorhombic structure with Pbam space group of Bi2Fe4O9 confirmed by the relative diffraction pattern. All sharp intense diffracted patterns might be indexed based on the standard value ((JCPDS card No. 74-1098). Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrate those granular sheets with aggregated spherical shaped morphology of BC and Bi2Fe4O9, respectively. The pristine Bi2Fe4O9 exhibits Raman modes at 378 cm−1 and 617 cm−1, which is ascribed to the orthorhombic structure. The orthorhombic structure was already confirmed from XRD results. BFOG5 sample shows high SSA (107.5 m2/g) and pore size (38.4 nm), which is nearly 2.2 times greater than that of pristine Bi2Fe4O9 (54.3 m2/g and 23.4 nm). Fiber optic sensor was fabricated and tested for ethanol gas with various gas concentrations (0–500 ppm). The sensitivity (defined as slope of fitted line) enhanced from 14.69 (count/%) for bare Bi2Fe4O9 to 33.94 (count/%) for Bi2Fe4O9/BC (BFOG5). The response and recovery time was 25 s and 20 s for Bi2Fe4O9/BC (BFOG5) sensor, which is higher than that of bare Bi2Fe4O9 (42 s and 33 s). Our findings pave the way for a unique hybrid Bi2Fe4O9/BC composite to be used in a highly sensitive C2H5OH gas sensor system at RT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和构建生物碳衍生 Bi2Fe4O9 纳米复合材料传感器,用于检测乙醇气体的包覆改性光纤传感器
通过声化学方法制造了由生物碳(BC)衍生的 Bi2Fe4O9 混合传感器。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、傅立叶变换红外光谱 (FTIR) 和 N2 吸附-解吸分别测定了材料的结构、形态和孔隙率特征。使用包覆改性光纤传感器评估了材料的气体传感特性。相对衍射图样证实了 Bi2Fe4O9 具有 Pbam 空间群的正方体结构。所有尖锐强烈的衍射图样都可以根据标准值(JCPDS 证号 74-1098)进行索引。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像分别显示了 BC 和 Bi2Fe4O9 的聚集球形颗粒片状形态。原始的 Bi2Fe4O9 在 378 cm-1 和 617 cm-1 处显示出拉曼模式,这归因于正方体结构。正方体结构已从 XRD 结果中得到证实。BFOG5 样品显示出较高的 SSA(107.5 m2/g)和孔径(38.4 nm),是原始 Bi2Fe4O9(54.3 m2/g 和 23.4 nm)的近 2.2 倍。制作了光纤传感器,并对不同浓度(0-500 ppm)的乙醇气体进行了测试。灵敏度(定义为拟合线的斜率)从裸 Bi2Fe4O9 的 14.69(计数/%)提高到 Bi2Fe4O9/BC (BFOG5) 的 33.94(计数/%)。Bi2Fe4O9/BC (BFOG5) 传感器的响应和恢复时间分别为 25 秒和 20 秒,高于裸 Bi2Fe4O9(42 秒和 33 秒)。我们的研究结果为将独特的 Bi2Fe4O9/BC 复合材料用于实时高灵敏度 C2H5OH 气体传感器系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Enhancing the properties of PEG-based solid polymer electrolytes with TiO2 nanoparticles for potassium ion batteries Exploring phytoconstituent for confronting the symptoms of polycystic ovarian syndrome: molecular dynamics simulation, quantum studies, free energy calculations and network analysis approaches Optical properties of Gd3+ doped bismuth silicate crystals based on first principles Discovering the therapeutic potential of Naringenin in diabetes related to GLUT-4 and its regulatory factors: A computational approach First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1