首页 > 最新文献

Chemical Physics Impact最新文献

英文 中文
Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications 利用废咖啡渣绿色合成的碳量子点在 EDLC 电极中的应用表征
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.chphi.2024.100767
This study investigates the green synthesis of carbon quantum dots (CQDs) from spent coffee grounds using a hydrothermal method, offering an eco-friendly, cost-effective, and straightforward approach to nanomaterial production. The synthesized CQDs, with particle sizes ranging from 1.6 to 4.4 nm, exhibited notable fluorescence, achieving quantum yields of 37.0 %, 54.3 %, and 63.3 % depending on the coffee source. Characterization technique, including XRD, FTIR, SEM, TEM, and BET, confirmed their structural suitability of these CQDs for energy storage applications. Their electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the CQDs tested, those derived from spent Liberica coffee ground (medium roasted) demonstrated superior performance, with a discharging specific capacitance of 97.5 F/g, an energy density of 4.3 Wh/kg, and a power density of 130.6 W/kg at a current density of 0.5 A/g. Additionally, they exhibited acceptable internal resistance (Ra = 0.01 kΩ and Rab = 16.9 kΩ), indicating favourable charge transfer characteristics. These results underscore the enhanced energy storage potential of CQDs derived from spent coffee grounds. The findings not only highlight the excellent electrochemical performance but also support the viability of biomass waste as a valuable resource for advanced energy storage applications, promoting sustainable, eco-friendly technologies.
本研究采用水热法从废咖啡渣中绿色合成碳量子点(CQDs),为纳米材料的生产提供了一种环保、经济、直接的方法。合成的碳量子点粒径在 1.6 纳米到 4.4 纳米之间,具有显著的荧光特性,根据咖啡来源的不同,量子产率分别为 37.0%、54.3% 和 63.3%。包括 XRD、FTIR、SEM、TEM 和 BET 在内的表征技术证实了这些 CQDs 在结构上适用于储能应用。它们的电化学性能通过循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗光谱法(EIS)进行了评估。在测试的 CQDs 中,从废弃的 Liberica 咖啡粉(中度烘焙)中提取的 CQDs 表现出卓越的性能,其放电比电容为 97.5 F/g,能量密度为 4.3 Wh/kg,在 0.5 A/g 的电流密度下,功率密度为 130.6 W/kg。此外,它们还表现出可接受的内阻(Ra = 0.01 kΩ,Rab = 16.9 kΩ),这表明它们具有良好的电荷转移特性。这些结果表明,从废弃咖啡渣中提取的 CQDs 具有更强的储能潜力。这些发现不仅突显了其优异的电化学性能,还证明了生物质废弃物作为先进储能应用的宝贵资源的可行性,促进了可持续的生态友好型技术的发展。
{"title":"Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications","authors":"","doi":"10.1016/j.chphi.2024.100767","DOIUrl":"10.1016/j.chphi.2024.100767","url":null,"abstract":"<div><div>This study investigates the green synthesis of carbon quantum dots (CQDs) from spent coffee grounds using a hydrothermal method, offering an eco-friendly, cost-effective, and straightforward approach to nanomaterial production. The synthesized CQDs, with particle sizes ranging from 1.6 to 4.4 nm, exhibited notable fluorescence, achieving quantum yields of 37.0 %, 54.3 %, and 63.3 % depending on the coffee source. Characterization technique, including XRD, FTIR, SEM, TEM, and BET, confirmed their structural suitability of these CQDs for energy storage applications. Their electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the CQDs tested, those derived from spent <em>Liberica</em> coffee ground (medium roasted) demonstrated superior performance, with a discharging specific capacitance of 97.5 F/g, an energy density of 4.3 Wh/kg, and a power density of 130.6 W/kg at a current density of 0.5 A/g. Additionally, they exhibited acceptable internal resistance (<em>R</em><sub>a</sub> = 0.01 kΩ and <em>R</em><sub>ab</sub> = 16.9 kΩ), indicating favourable charge transfer characteristics. These results underscore the enhanced energy storage potential of CQDs derived from spent coffee grounds. The findings not only highlight the excellent electrochemical performance but also support the viability of biomass waste as a valuable resource for advanced energy storage applications, promoting sustainable, eco-friendly technologies.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies 50 MeV 锂离子和 80 MeV 镍离子诱导氧化锌菜花状结构发生变化:结构、光学和电学研究
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.chphi.2024.100762
In this work, ZnO has been synthesized by co-precipitation method and mixed with 0.5 % of polyvinyl alcohol for the preparation of thin film. These ZnO thin films have been irradiated with lithium (Li) and nickel (Ni) beams of energy 50 MeV and 80 MeV respectively, at different fluence. XRD pattern reveals that the crystallite size varies from 41 nm to 21 nm for Li-irradiated ZnO and to 16 nm for Ni irradiated ZnO compared to pure ZnO. From UV–Visible spectroscopy, the bandgap of Li-irradiated ZnO to a fluence of 5 × 1012 ions/cm2 is found to be 3.20 eV However, for Ni-irradiated ZnO bandgap varies from 3.11 to 3.08 eV Upon investigation of PL spectra, it has been observed that broadening in the defect region is observed on increasing the Li fluence. However, Ni-ions lead to enhancement of defects with increase in fluence. Electrical properties reveal the enhancement of current in order of three for both the ions irradiated ZnO. Li irradiation leads to reduction in resistivity whereas Ni irradiation leads to the enhancement in ZnO resistivity. This suggests that the ion beam induced modification in ZnO lattice could be useful for tuning the optoelectronic properties & can be used for organic light emitting diodes.
这项研究采用共沉淀法合成了氧化锌,并与 0.5% 的聚乙烯醇混合制备薄膜。这些氧化锌薄膜分别用能量为 50 MeV 和 80 MeV 的锂(Li)和镍(Ni)光束以不同的通量进行辐照。XRD 图谱显示,与纯氧化锌相比,锂辐照氧化锌的晶粒大小从 41 纳米到 21 纳米不等,而镍辐照氧化锌的晶粒大小则为 16 纳米。紫外-可见光谱显示,锂离子辐照 ZnO 的带隙为 3.20 eV,而镍离子辐照 ZnO 的带隙则为 3.11 至 3.08 eV。然而,镍离子会导致缺陷随着通量的增加而增强。电学特性显示,两种离子辐照氧化锌后,电流都以三的顺序增强。锂离子辐照导致电阻率降低,而镍离子辐照则导致氧化锌电阻率升高。这表明,离子束诱导的氧化锌晶格改性可用于调整光电特性和amp;可用于有机发光二极管。
{"title":"50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies","authors":"","doi":"10.1016/j.chphi.2024.100762","DOIUrl":"10.1016/j.chphi.2024.100762","url":null,"abstract":"<div><div>In this work, ZnO has been synthesized by co-precipitation method and mixed with 0.5 % of polyvinyl alcohol for the preparation of thin film. These ZnO thin films have been irradiated with lithium (Li) and nickel (Ni) beams of energy 50 MeV and 80 MeV respectively, at different fluence. XRD pattern reveals that the crystallite size varies from 41 nm to 21 nm for Li-irradiated ZnO and to 16 nm for Ni irradiated ZnO compared to pure ZnO. From UV–Visible spectroscopy, the bandgap of Li-irradiated ZnO to a fluence of 5 × 10<sup>12</sup> ions/cm<sup>2</sup> is found to be 3.20 eV However, for Ni-irradiated ZnO bandgap varies from 3.11 to 3.08 eV Upon investigation of PL spectra, it has been observed that broadening in the defect region is observed on increasing the Li fluence. However, Ni-ions lead to enhancement of defects with increase in fluence. Electrical properties reveal the enhancement of current in order of three for both the ions irradiated ZnO. Li irradiation leads to reduction in resistivity whereas Ni irradiation leads to the enhancement in ZnO resistivity. This suggests that the ion beam induced modification in ZnO lattice could be useful for tuning the optoelectronic properties &amp; can be used for organic light emitting diodes.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 用于苯酚吸附研究的 PES 膜中的磁驱动颗粒迁移:等温线和动力学模型视角
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.chphi.2024.100766
Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5>30>50>40>13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3>12>30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.
磁性曝露诱导颗粒在膜内迁移。为了研究磁性对膜结构的影响,吸附剂的成分在 3、12 和 30wt% 之间变化。迁移的锌铁氧体会聚集在膜表面附近,根据显微镜成像,不同的锌铁氧体成分会影响膜结构。在苯酚浓度分别为 5、13、30、40 和 50 mg/L 时,对苯酚的吸附性能进行了研究。吸附研究表明,初始浓度对苯酚的去除率有影响,可按以下顺序排列(左边的去除率较高):5>30>50>40>13 mg/L.不同的锌铁氧体组成表明,锌铁氧体重量百分比越高,对苯酚的去除效果越好,具体排名如下(靠左的去除效果较好):3>12>30 wt%。等温线模型显示,尽管在整个吸附试验中使用的吸附位点数量相似(1 个位点),但普通膜的吸附率很高。动力学模型显示,磁诱导膜具有更高的最大吸附容量,其饱和单薄层的吸附量是普通膜的三倍。
{"title":"Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective","authors":"","doi":"10.1016/j.chphi.2024.100766","DOIUrl":"10.1016/j.chphi.2024.100766","url":null,"abstract":"<div><div>Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5&gt;30&gt;50&gt;40&gt;13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3&gt;12&gt;30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy 捕获光线,揭示特性:激光诱捕是光致发光光谱学的有力工具
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-25 DOI: 10.1016/j.chphi.2024.100764
Laser trapping, a non-contact technique for manipulating microscopic objects, has gained prominence in scientific research. When coupled with fluorescence spectroscopy, it offers a powerful tool for exploring material properties. This study demonstrates the application of laser trapping in the crystallization of MAPbBr3 perovskites and its simultaneous use for photoluminescence imaging. MAPbBr3 perovskites are a class of materials with exceptional optical properties, making them attractive for various optoelectronic applications. However, conventional excitation methods using UV light can lead to phase segregation and mechanical distortion of these materials. Two-photon excitation, on the other hand, offers advantages such as deeper penetration and reduced scattering interference. In this research, we utilize a 1064 nm continuous wave laser for both trapping and excitation purposes. The MAPbBr3 perovskite, with its absorption band ranging from 400 to 540 nm, exhibits two-photon excitation at 532 nm. By focusing the laser beam at the air-solution interface, we successfully crystallize MAPbBr3 perovskites from an unsaturated precursor solution. Simultaneously, the same laser source is used for photoluminescence imaging, allowing for real-time analysis of the crystal's emission properties. This approach eliminates the need for additional excitation sources and simplifies the experimental setup. The combination of laser trapping and two-photon excitation opens up new possibilities for studying perovskite materials. It provides a gentle and non-invasive method for manipulating and characterizing hybrid perovskites materials, paving the way for advancements in various fields such as optoelectronics and energy harvesting.
激光诱捕是一种用于操纵微观物体的非接触技术,在科学研究中的地位日益突出。与荧光光谱技术相结合,它为探索材料特性提供了一个强大的工具。本研究展示了激光捕集技术在 MAPbBr3 包晶石结晶中的应用,并将其同时用于光致发光成像。MAPbBr3 包晶石是一类具有特殊光学特性的材料,因此对各种光电应用具有吸引力。然而,传统的紫外光激发方法会导致这些材料发生相分离和机械变形。而双光子激发则具有穿透更深和减少散射干扰等优点。在这项研究中,我们利用波长为 1064 nm 的连续波激光器进行捕获和激发。MAPbBr3 包晶的吸收带范围为 400 至 540 nm,在 532 nm 波长处可进行双光子激发。通过将激光束聚焦于空气-溶液界面,我们成功地从不饱和前驱体溶液中结晶出了 MAPbBr3 包晶。同时,同一激光源还可用于光致发光成像,从而对晶体的发射特性进行实时分析。这种方法无需额外的激发光源,简化了实验装置。激光捕获和双光子激发的结合为研究包晶材料开辟了新的可能性。它为操作和表征混合包晶材料提供了一种温和、非侵入性的方法,为光电子学和能量收集等各个领域的进步铺平了道路。
{"title":"Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy","authors":"","doi":"10.1016/j.chphi.2024.100764","DOIUrl":"10.1016/j.chphi.2024.100764","url":null,"abstract":"<div><div>Laser trapping, a non-contact technique for manipulating microscopic objects, has gained prominence in scientific research. When coupled with fluorescence spectroscopy, it offers a powerful tool for exploring material properties. This study demonstrates the application of laser trapping in the crystallization of MAPbBr<sub>3</sub> perovskites and its simultaneous use for photoluminescence imaging. MAPbBr<sub>3</sub> perovskites are a class of materials with exceptional optical properties, making them attractive for various optoelectronic applications. However, conventional excitation methods using UV light can lead to phase segregation and mechanical distortion of these materials. Two-photon excitation, on the other hand, offers advantages such as deeper penetration and reduced scattering interference. In this research, we utilize a 1064 nm continuous wave laser for both trapping and excitation purposes. The MAPbBr<sub>3</sub> perovskite, with its absorption band ranging from 400 to 540 nm, exhibits two-photon excitation at 532 nm. By focusing the laser beam at the air-solution interface, we successfully crystallize MAPbBr<sub>3</sub> perovskites from an unsaturated precursor solution. Simultaneously, the same laser source is used for photoluminescence imaging, allowing for real-time analysis of the crystal's emission properties. This approach eliminates the need for additional excitation sources and simplifies the experimental setup. The combination of laser trapping and two-photon excitation opens up new possibilities for studying perovskite materials. It provides a gentle and non-invasive method for manipulating and characterizing hybrid perovskites materials, paving the way for advancements in various fields such as optoelectronics and energy harvesting.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Taraxacum officinale phytoconstituents as potential JNK1 inhibitors: Perspectives from ADMET, molecular docking, molecular dynamics, and density functional theory 评估作为潜在 JNK1 抑制剂的蒲公英植物成分:ADMET、分子对接、分子动力学和密度泛函理论的观点
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-22 DOI: 10.1016/j.chphi.2024.100757
The impact of activated c-Jun N-terminal kinase isoform JNK1 chemical pathways in insulin biosynthesis poses a potential health risk of glucose intolerance. Blocking the activity of JNK1 is a promising route for the design of anti-diabetic drugs and associated metabolic syndromes. In this study, 17 extracts of Taraxacum officinale were chosen to bind JNK1 and ascertain their modulatory activity. We employed molecular dynamics, density functional theory and three docking approaches: standard precision, extra precision and quantum polarized ligand docking. The best binding free energy results were obtained from the quantum polarized ligand docking, with myricetin (1) showing a docking score of -10.464 kcal/mol, while quercetin (2) and daphnetin (3) displayed values of -9.769 and -7.136 kcal/mol respectively. Following this, 100 ns molecular dynamics simulations with Desmond showed stabilization average root mean square deviations of 2.34, 2.87, and 2.88 Å for myricetin, quercetin and daphnetin. Further, molecular dynamics revealed complexes of myricetin (ΔG = -38.81 kcal/mol) and quercetin (ΔG = -34.99 kcal/mol) as the most stable inside the JNK1 interface. The energy gaps for myricetin, quercetin and daphnetin were estimated to be 6.17, 6.00 and 6.53 eV employing the M06–2X functional in PCM solvation. Further, myricetin showed the strongest intramolecular hydrogen bonding with -13.06 kcal/mol. This study provides insights into possible anti-type-2 diabetes properties of Taraxacum officinale targeting JNK1.
活化的 c-Jun N-terminal 激酶异构体 JNK1 化学途径对胰岛素生物合成的影响构成了葡萄糖不耐受的潜在健康风险。阻断 JNK1 的活性是设计抗糖尿病药物和相关代谢综合征的一条可行途径。本研究选择了 17 种蒲公英提取物与 JNK1 结合并确定其调节活性。我们采用了分子动力学、密度泛函理论和三种对接方法:标准精度对接、额外精度对接和量子极化配体对接。量子极化配体对接获得了最佳的结合自由能结果,其中杨梅素(1)的对接得分为-10.464 kcal/mol,而槲皮素(2)和水黄皮素(3)的对接得分分别为-9.769和-7.136 kcal/mol。随后,使用 Desmond 进行的 100 ns 分子动力学模拟显示,杨梅素、槲皮素和萘素的稳定化平均均方根偏差分别为 2.34、2.87 和 2.88 Å。此外,分子动力学显示,在 JNK1 界面内,三叶草素(ΔG = -38.81 kcal/mol)和槲皮素(ΔG = -34.99 kcal/mol)的复合物最为稳定。利用 PCM 溶胶中的 M06-2X 函数,估计出杨梅素、槲皮素和萘皮素的能隙分别为 6.17、6.00 和 6.53 eV。此外,杨梅素的分子内氢键最强,为 -13.06 kcal/mol。这项研究有助于深入了解蒲公英以 JNK1 为靶点可能具有的抗 2 型糖尿病特性。
{"title":"Evaluation of Taraxacum officinale phytoconstituents as potential JNK1 inhibitors: Perspectives from ADMET, molecular docking, molecular dynamics, and density functional theory","authors":"","doi":"10.1016/j.chphi.2024.100757","DOIUrl":"10.1016/j.chphi.2024.100757","url":null,"abstract":"<div><div>The impact of activated c-Jun N-terminal kinase isoform JNK1 chemical pathways in insulin biosynthesis poses a potential health risk of glucose intolerance. Blocking the activity of JNK1 is a promising route for the design of anti-diabetic drugs and associated metabolic syndromes. In this study, 17 extracts of <em>Taraxacum officinale</em> were chosen to bind JNK1 and ascertain their modulatory activity. We employed molecular dynamics, density functional theory and three docking approaches: standard precision, extra precision and quantum polarized ligand docking. The best binding free energy results were obtained from the quantum polarized ligand docking, with myricetin (1) showing a docking score of -10.464 kcal/mol, while quercetin (2) and daphnetin (3) displayed values of -9.769 and -7.136 kcal/mol respectively. Following this, 100 ns molecular dynamics simulations with Desmond showed stabilization average root mean square deviations of 2.34, 2.87, and 2.88 Å for myricetin, quercetin and daphnetin. Further, molecular dynamics revealed complexes of myricetin (ΔG = -38.81 kcal/mol) and quercetin (ΔG = -34.99 kcal/mol) as the most stable inside the JNK1 interface. The energy gaps for myricetin, quercetin and daphnetin were estimated to be 6.17, 6.00 and 6.53 eV employing the M06–2X functional in PCM solvation. Further, myricetin showed the strongest intramolecular hydrogen bonding with -13.06 kcal/mol. This study provides insights into possible anti-type-2 diabetes properties of <em>Taraxacum officinale</em> targeting JNK1.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity 利用多草药提取物绿色合成双金属 Ag-ZnO 纳米复合材料,用于抗菌消炎
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-22 DOI: 10.1016/j.chphi.2024.100763
The current research has involved to develop nanoparticles (NPs) of zinc oxide (ZnO) doped with silver (Ag) through an eco-friendly method. Eclipta prostrate (EP), Eclipta alba (EA), and Tridax procumbans (TP) are subjected to Soxhlet extraction using ethyl acetate. Alkaloids, flavonoids, and phenols were quantified using standard methods. Polyherbal extract was used to synthesize silver-zinc oxide nanocomposites (Ag-ZnO NCs) via the sol-gel method. The reduction of metal ions was confirmed by UV–visible spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Polyherbal plants are found to have higher concentrations of phenols, flavonoids, and alkaloids than indigenous plants. Ag-ZnO NCs functional group has been identified using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. UV–vis spectroscopy revealed the surface plasmon resonance (SPR) of silver nanoparticles at 463–477 nm and zinc oxide nanoparticles at 266–267 nm. For Ag-ZnO NCs, the SPR peak was observed at 450 nm. Scanning electron microscopy confirmed the spherical morphology of the Ag-ZnO NCs. The anti-microbial activity of the formulated Ag-ZnO NCs was more effective than the extract against all tested pathogens. The most effective antimicrobial activities are achieved for Ag-ZnO NCs at 50 µg and 200 µg for extract. Biosynthesized nanoparticles exhibit a significant anti-inflammatory effect of 68% at a low concentration of 500 µg/mL, greater than the efficacy of diclofenac sodium. Additionally, the synthesized Ag-ZnO nanoparticle demonstrated its stability for 90 days and showed strong antimicrobial properties.
目前的研究涉及通过环保方法开发掺杂银(Ag)的氧化锌(ZnO)纳米粒子(NPs)。采用乙酸乙酯对 Eclipta prostrate (EP)、Eclipta alba (EA) 和 Tridax procumbans (TP) 进行索氏提取。采用标准方法对生物碱、黄酮类化合物和酚类化合物进行定量。利用多草本提取物通过溶胶-凝胶法合成银-氧化锌纳米复合材料(Ag-ZnO NCs)。紫外可见光谱、扫描电子显微镜和热重分析证实了金属离子的还原。研究发现,多草本植物的酚类、黄酮类和生物碱含量高于本地植物。利用傅立叶变换红外光谱(FTIR)确定了 Ag-ZnO NCs 的官能团。紫外可见光谱显示银纳米粒子在 463-477 纳米波长处和氧化锌纳米粒子在 266-267 纳米波长处产生了表面等离子体共振(SPR)。Ag-ZnO NCs 的 SPR 峰在 450 纳米波长处。扫描电子显微镜证实了 Ag-ZnO NCs 的球形形态。配制的 Ag-ZnO NCs 对所有测试病原体的抗微生物活性均优于提取物。Ag-ZnO NCs 的抗菌活性在 50 µg 和 200 µg 的提取物中最为有效。生物合成的纳米粒子在低浓度(500 微克/毫升)时具有 68% 的显著抗炎效果,高于双氯芬酸钠的疗效。此外,合成的 Ag-ZnO 纳米粒子在 90 天内表现出稳定性,并具有很强的抗菌特性。
{"title":"Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity","authors":"","doi":"10.1016/j.chphi.2024.100763","DOIUrl":"10.1016/j.chphi.2024.100763","url":null,"abstract":"<div><div>The current research has involved to develop nanoparticles (NPs) of zinc oxide (ZnO) doped with silver (Ag) through an eco-friendly method. <em>Eclipta prostrate</em> (EP)<em>, Eclipta alba</em> (EA), and <em>Tridax procumbans</em> (TP) are subjected to Soxhlet extraction using ethyl acetate. Alkaloids, flavonoids, and phenols were quantified using standard methods. Polyherbal extract was used to synthesize silver-zinc oxide nanocomposites (Ag-ZnO NCs) via the sol-gel method. The reduction of metal ions was confirmed by UV–visible spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Polyherbal plants are found to have higher concentrations of phenols, flavonoids, and alkaloids than indigenous plants. Ag-ZnO NCs functional group has been identified using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. UV–vis spectroscopy revealed the surface plasmon resonance (SPR) of silver nanoparticles at 463–477 nm and zinc oxide nanoparticles at 266–267 nm. For Ag-ZnO NCs, the SPR peak was observed at 450 nm. Scanning electron microscopy confirmed the spherical morphology of the Ag-ZnO NCs. The anti-microbial activity of the formulated Ag-ZnO NCs was more effective than the extract against all tested pathogens. The most effective antimicrobial activities are achieved for Ag-ZnO NCs at 50 µg and 200 µg for extract. Biosynthesized nanoparticles exhibit a significant anti-inflammatory effect of 68% at a low concentration of 500 µg/mL, greater than the efficacy of diclofenac sodium. Additionally, the synthesized Ag-ZnO nanoparticle demonstrated its stability for 90 days and showed strong antimicrobial properties.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of Tacrine modified Schiff bases as anti-Alzheimer Agents: An effective strategy validated through in-silico and in-vitro analysis 作为抗阿尔茨海默氏症药物的他克林修饰席夫碱的绿色合成:通过室内和体外分析验证的有效策略
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-18 DOI: 10.1016/j.chphi.2024.100759
A variety of Tacrine-modified Schiff base analogues were developed via solvent free (green) method and structurally elucidated using 1HNMR, FTIR and UV–Vis analysis. High product yield was obtained from the synthesised molecules, which were produced efficiently at room temperature without the need of a solvent. The developed molecules were subsequently assessed for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These molecules revealed effective inhibition of AChE and BChE enzymes with IC50 values varying from 0.1 ± 0.02 to 0.3 ± 0.03 μM and 0.065 ± 0.01 to 0.3 ± 0.03 μM respectively. Compared to the standard Tacrine which has IC50 values of 0.35 ± 0.02 μM for AChE and 0.1 ± 0.01 μM for BChE. Notably, compound 3f showed strong inhibition among others for both the enzymes. The structure–activity relationship of derivatives synthesized were verified and established through molecular docking studies. Theoretical ADME studies also predicted excellent drug-likeness for all the synthesized molecules. Antioxidant activities were also assessed because elevated oxidative stress levels are linked with cognitive loss in Alzheimer's disease (AD). These findings suggest that the lead compound is potentially an effective inhibitor for the therapeutic management of AD.
通过无溶剂(绿色)方法开发了多种他克林修饰的希夫碱类似物,并利用 1HNMR、傅立叶变换红外光谱和紫外可见光谱分析对其结构进行了阐明。合成的分子在室温下无需溶剂即可高效生产,产品收率高。随后评估了所开发分子抑制乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE)的潜力。这些分子能有效抑制乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE),其 IC50 值分别为 0.1 ± 0.02 至 0.3 ± 0.03 μM 和 0.065 ± 0.01 至 0.3 ± 0.03 μM。相比之下,标准药物他克林对 AChE 的 IC50 值为 0.35 ± 0.02 μM,对 BChE 的 IC50 值为 0.1 ± 0.01 μM。值得注意的是,化合物 3f 对这两种酶都有很强的抑制作用。通过分子对接研究,验证并确立了所合成衍生物的结构-活性关系。理论 ADME 研究也预测所有合成的分子都具有极佳的药物相似性。由于氧化应激水平升高与阿尔茨海默病(AD)的认知能力下降有关,因此还对其抗氧化活性进行了评估。这些研究结果表明,该先导化合物可能是治疗阿尔茨海默病的有效抑制剂。
{"title":"Green synthesis of Tacrine modified Schiff bases as anti-Alzheimer Agents: An effective strategy validated through in-silico and in-vitro analysis","authors":"","doi":"10.1016/j.chphi.2024.100759","DOIUrl":"10.1016/j.chphi.2024.100759","url":null,"abstract":"<div><div>A variety of Tacrine-modified Schiff base analogues were developed via solvent free (green) method and structurally elucidated using 1H<img>NMR, FTIR and UV–Vis analysis. High product yield was obtained from the synthesised molecules, which were produced efficiently at room temperature without the need of a solvent. The developed molecules were subsequently assessed for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These molecules revealed effective inhibition of AChE and BChE enzymes with IC<sub>50</sub> values varying from 0.1 ± 0.02 to 0.3 ± 0.03 μM and 0.065 ± 0.01 to 0.3 ± 0.03 μM respectively. Compared to the standard Tacrine which has IC<sub>50</sub> values of 0.35 ± 0.02 μM for AChE and 0.1 ± 0.01 μM for BChE. Notably, compound 3f showed strong inhibition among others for both the enzymes. The structure–activity relationship of derivatives synthesized were verified and established through molecular docking studies. Theoretical ADME studies also predicted excellent drug-likeness for all the synthesized molecules. Antioxidant activities were also assessed because elevated oxidative stress levels are linked with cognitive loss in Alzheimer's disease (AD). These findings suggest that the lead compound is potentially an effective inhibitor for the therapeutic management of AD.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of silver nanoparticles and their promising antimicrobial effects 银纳米粒子的合成与表征及其良好的抗菌效果
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-18 DOI: 10.1016/j.chphi.2024.100758
Silver nanoparticles have garnered significant interest due to their unique properties, such as small size, high specific surface area, and high reactivity, making them valuable in various industries, including medicine, healthcare, consumer products, and food. The synthesis of silver nanoparticles has been extensively studied, with numerous methods reported, including physical, chemical, and biological routes. These synthesis methods can influence the antibacterial properties of silver nanoparticles, which is critical in hospital settings where pathogen exposure and antibiotic resistance are prevalent concerns. Notably, hospital environments face high infection risks from pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, necessitating new antibacterial agents. This study aims to evaluate the antibacterial effects of synthesized silver nanoparticles against the pathogenic microorganisms S. aureus, P. aeruginosa, and Escherichia coli. The Silver nanoparticles were characterized using UV–vis spectroscopy, Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). The nanoparticles had an average size of 52 nm and exhibited an absorption peak at 430 nm. Both S. aureus and P. aeruginosa demonstrated zones of inhibition when exposed to the silver nanoparticles, indicating their potent antibacterial activity. This study highlights the potential of silver nanoparticles as effective antibacterial agents in the healthcare industry, particularly in combating hospital-acquired infections.
银纳米粒子因其独特的性能,如尺寸小、比表面积大和反应活性高,在医药、保健、消费品和食品等各行各业中都具有重要价值,因而备受关注。人们对银纳米粒子的合成进行了广泛的研究,报道了许多方法,包括物理、化学和生物途径。这些合成方法会影响银纳米粒子的抗菌特性,而这对于病原体暴露和抗生素耐药性普遍存在的医院环境至关重要。值得注意的是,医院环境面临着金黄色葡萄球菌和铜绿假单胞菌等病原体的高感染风险,因此需要新的抗菌剂。本研究旨在评估合成银纳米粒子对金黄色葡萄球菌、绿脓杆菌和大肠杆菌等病原微生物的抗菌效果。使用紫外可见光谱、动态光散射(DLS)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对银纳米粒子进行了表征。纳米颗粒的平均尺寸为 52 纳米,在 430 纳米处出现吸收峰。金黄色葡萄球菌和铜绿假单胞菌接触银纳米粒子后都出现了抑制区,这表明银纳米粒子具有很强的抗菌活性。这项研究凸显了银纳米粒子作为有效抗菌剂在医疗保健行业的应用潜力,尤其是在抗击医院感染方面。
{"title":"Synthesis and characterization of silver nanoparticles and their promising antimicrobial effects","authors":"","doi":"10.1016/j.chphi.2024.100758","DOIUrl":"10.1016/j.chphi.2024.100758","url":null,"abstract":"<div><div>Silver nanoparticles have garnered significant interest due to their unique properties, such as small size, high specific surface area, and high reactivity, making them valuable in various industries, including medicine, healthcare, consumer products, and food. The synthesis of silver nanoparticles has been extensively studied, with numerous methods reported, including physical, chemical, and biological routes. These synthesis methods can influence the antibacterial properties of silver nanoparticles, which is critical in hospital settings where pathogen exposure and antibiotic resistance are prevalent concerns. Notably, hospital environments face high infection risks from pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, necessitating new antibacterial agents. This study aims to evaluate the antibacterial effects of synthesized silver nanoparticles against the pathogenic microorganisms S. aureus, P. aeruginosa, and Escherichia coli. The Silver nanoparticles were characterized using UV–vis spectroscopy, Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). The nanoparticles had an average size of 52 nm and exhibited an absorption peak at 430 nm. Both S. aureus and P. aeruginosa demonstrated zones of inhibition when exposed to the silver nanoparticles, indicating their potent antibacterial activity. This study highlights the potential of silver nanoparticles as effective antibacterial agents in the healthcare industry, particularly in combating hospital-acquired infections.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, morphological and photoluminescence studies of Ca7Mg2P6O24:RE3+(RE3+= Tb3+, Dy3+) nanophosphor for solid state illumination 固态照明用 Ca7Mg2P6O24:RE3+(RE3+= Tb3+、Dy3+)纳米荧光粉的结构、形态和光致发光研究
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-15 DOI: 10.1016/j.chphi.2024.100760
The Ca7Mg2P6O24:RE3+ (RE3+= Tb3+, Dy3+) nanophosphor material was synthesized by traditional wet chemical method. The XRD are used to determine phase and crystallinity of the synthesized sample; further FTIR, SEM, TEM, and PL properties were studied. The XRD pattern of prepared sample match well with standard JCPDS card no 00–020–0348, and it exhibits the rhombohedral structure along with space group R3c (161). The phosphate (PO4)3-group absorption band was observed at 990–1100 cm-1 in FTIR. Surface morphology (TEM analysis) reveals particle sizes in the range of 55–110 nm. The luminescence emission spectra of Ca7Mg2P6O24 phosphor activated by Tb3+ were studied at three different excitations: 352 nm, 370 nm, and 379 nm. The spectra show two emission peaks at 470 nm (blue) and 545 nm (green). These are due to the 5D47F6 and 5D47F5 transitions of Tb3+ ions. The highest intensity peak is located at 545 nm. The Ca7Mg2P6O24:Tb3+ phosphor's CIE chromaticity coordinates are (0.040, 0.316) at 491 nm and (0.265, 0.724) at 543 nm. These are in the blue and green areas on the edges of the CIE diagram, respectively. The photoluminescence emission spectra of Dy3+-doped Ca7Mg2P6O24 phosphor show two significant emission peaks located at 482 nm and 574 nm. These are caused by the 4F9/25H15/2 and 4F9/26H13/2 transitions of Dy3+ ions, which produce blue and yellow light, respectively, with an excitation wavelength of 350 nm. The sharp peak position at 482 nm produces the strongest emission. The effect of concentration quenching in between the Dy3+-Dy3+ions and Tb3+-Tb3+ ions is due to dipole-dipole interaction. The CIE color coordinate is found to be (0.082, 0.156) at 482 nm and (0.471, 0.527) at 574 nm which lies in blue and yellow border of CIE diagram. The lifespan of Tb3+, Dy3+activated Ca7Mg2P6O24 nanophosphor of highest concentration is found to be 1.917 ms and 0.9985 ms respectively. On investigation, the synthesized Tb3+, Dy3+activated Ca7Mg2P6O24 nanophosphor can be potential for solid lightning devices & other display application.
采用传统的湿化学方法合成了 Ca7Mg2P6O24:RE3+(RE3+= Tb3+、Dy3+)纳米磷材料。XRD 被用来确定合成样品的相位和结晶度;傅立叶变换红外光谱、扫描电子显微镜、电子显微镜和光致发光特性被进一步研究。所制备样品的 X 射线衍射图与 JCPDS 编号为 00-020-0348 的标准卡完全吻合,呈斜方体结构,空间群为 R3c (161)。傅立叶变换红外光谱在 990-1100 cm-1 处观察到磷酸(PO4)3 基团吸收带。表面形貌(TEM 分析)显示颗粒大小在 55-110 nm 之间。研究了 Tb3+ 激活的 Ca7Mg2P6O24 荧光粉在三种不同激发下的发光发射光谱:352 nm、370 nm 和 379 nm。光谱在 470 纳米(蓝色)和 545 纳米(绿色)处显示出两个发射峰。这是由于 Tb3+ 离子的 5D4 → 7F6 和 5D4 → 7F5 转变造成的。最高强度峰位于 545 纳米波长处。Ca7Mg2P6O24:Tb3+ 荧光粉的 CIE 色度坐标为 491 纳米波长处的 (0.040, 0.316) 和 543 纳米波长处的 (0.265, 0.724)。它们分别位于 CIE 图边缘的蓝色和绿色区域。掺杂了 Dy3+ 的 Ca7Mg2P6O24 荧光粉的光致发光发射光谱在 482 nm 和 574 nm 处显示出两个显著的发射峰。这是由 Dy3+ 离子的 4F9/2 → 5H15/2 和 4F9/2 → 6H13/2 转变引起的,在 350 nm 的激发波长下分别产生蓝光和黄光。波长为 482 nm 的尖峰位置产生最强的发射。Dy3+-Dy3+ 离子和 Tb3+-Tb3+ 离子之间的浓度淬灭效应是由偶极-偶极相互作用引起的。CIE 色坐标在 482 纳米处为(0.082, 0.156),在 574 纳米处为(0.471, 0.527),分别位于 CIE 图的蓝色和黄色边界。最高浓度的 Tb3+、Dy3+ 活化 Ca7Mg2P6O24 纳米荧光粉的寿命分别为 1.917 毫秒和 0.9985 毫秒。经研究,合成的 Tb3+、Dy3+活化 Ca7Mg2P6O24 纳米荧光粉有可能用于固体闪电装置和amp;其他显示应用。
{"title":"Structural, morphological and photoluminescence studies of Ca7Mg2P6O24:RE3+(RE3+= Tb3+, Dy3+) nanophosphor for solid state illumination","authors":"","doi":"10.1016/j.chphi.2024.100760","DOIUrl":"10.1016/j.chphi.2024.100760","url":null,"abstract":"<div><div>The Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub>:RE<sup>3+</sup> (RE<sup>3+</sup>= Tb<sup>3+</sup>, Dy<sup>3+</sup>) nanophosphor material was synthesized by traditional wet chemical method. The XRD are used to determine phase and crystallinity of the synthesized sample; further FTIR, SEM, TEM, and PL properties were studied. The XRD pattern of prepared sample match well with standard JCPDS card no 00–020–0348, and it exhibits the rhombohedral structure along with space group R3c (161). The phosphate (PO<sub>4</sub>)<sup>3-</sup>group absorption band was observed at 990–1100 cm<sup>-1</sup> in FTIR. Surface morphology (TEM analysis) reveals particle sizes in the range of 55–110 nm. The luminescence emission spectra of Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> phosphor activated by Tb<sup>3+</sup> were studied at three different excitations: 352 nm, 370 nm, and 379 nm. The spectra show two emission peaks at 470 nm (blue) and 545 nm (green). These are due to the <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>6</sub> and <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub> transitions of Tb<sup>3+</sup> ions. The highest intensity peak is located at 545 nm. The Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub>:Tb<sup>3+</sup> phosphor's CIE chromaticity coordinates are (0.040, 0.316) at 491 nm and (0.265, 0.724) at 543 nm. These are in the blue and green areas on the edges of the CIE diagram, respectively. The photoluminescence emission spectra of Dy<sup>3+</sup>-doped Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> phosphor show two significant emission peaks located at 482 nm and 574 nm. These are caused by the <sup>4</sup>F<sub>9/2</sub> → <sup>5</sup>H<sub>15/2</sub> and <sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>13/2</sub> transitions of Dy<sup>3+</sup> ions, which produce blue and yellow light, respectively, with an excitation wavelength of 350 nm. The sharp peak position at 482 nm produces the strongest emission. The effect of concentration quenching in between the Dy<sup>3+</sup>-Dy<sup>3+</sup>ions and Tb<sup>3+</sup>-Tb<sup>3+</sup> ions is due to dipole-dipole interaction. The CIE color coordinate is found to be (0.082, 0.156) at 482 nm and (0.471, 0.527) at 574 nm which lies in blue and yellow border of CIE diagram. The lifespan of Tb<sup>3+</sup>, Dy<sup>3+</sup>activated Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> nanophosphor of highest concentration is found to be 1.917 ms and 0.9985 ms respectively. On investigation, the synthesized Tb<sup>3+</sup>, Dy<sup>3+</sup>activated Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> nanophosphor can be potential for solid lightning devices &amp; other display application.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A molecular dynamics investigation into the inhibitory function of hydroxypropyl-beta-cyclodextrin (HPBCD) in its interaction with amyloid-beta (Aβ) plaques near the cell membrane in the context of Alzheimer's disease. 对羟丙基-beta-环糊精(HPBCD)在阿尔茨海默病中与细胞膜附近的淀粉样β(Aβ)斑块相互作用的抑制功能进行分子动力学研究。
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1016/j.chphi.2024.100755
Although Alzheimer`s disease has been known for a long time, it is interesting that scientists are still doing widespread research on it. Meanwhile, in parallel with experimental research, computational research is also yielding interesting results. In this study, we investigated the inhibitory behavior of hydroxypropyl-beta-cyclodextrin (HPBCD) drug candidates, which are more soluble than beta-cyclodextrin (BCD), using molecular dynamics simulations and compared them with AC0107 new drug. Parameters such as cell membrane stability, protein stability, drug inhibition rate, protein permeability, hydrogen bonding agents, the study of the energy content of interactions between different groups, and interactions between different species were of interest. The outcomes indicate that the drug candidate HPBCD has a role in inhibiting protein membrane penetration and has better performance than new AC0107 drug. In other words, HPBCD not only act as a drug carrier of Alzheimer's disease, but also as an inhibitor of it and can play a double role in its improvement.
虽然阿尔茨海默病早已为人所知,但有趣的是,科学家们仍在对它进行广泛的研究。同时,在实验研究的同时,计算研究也取得了有趣的成果。在本研究中,我们利用分子动力学模拟研究了羟丙基-β-环糊精(HPBCD)候选药物的抑制行为,这些候选药物比β-环糊精(BCD)更易溶,并与 AC0107 新药进行了比较。研究关注的参数包括细胞膜稳定性、蛋白质稳定性、药物抑制率、蛋白质渗透性、氢键剂、不同基团间相互作用的能量含量研究以及不同物种间的相互作用。结果表明,候选药物 HPBCD 具有抑制蛋白质膜渗透的作用,其性能优于 AC0107 新药。换句话说,HPBCD 不仅可以作为阿尔茨海默病的药物载体,还可以作为阿尔茨海默病的抑制剂,对改善阿尔茨海默病起到双重作用。
{"title":"A molecular dynamics investigation into the inhibitory function of hydroxypropyl-beta-cyclodextrin (HPBCD) in its interaction with amyloid-beta (Aβ) plaques near the cell membrane in the context of Alzheimer's disease.","authors":"","doi":"10.1016/j.chphi.2024.100755","DOIUrl":"10.1016/j.chphi.2024.100755","url":null,"abstract":"<div><div>Although Alzheimer`s disease has been known for a long time, it is interesting that scientists are still doing widespread research on it. Meanwhile, in parallel with experimental research, computational research is also yielding interesting results. In this study, we investigated the inhibitory behavior of hydroxypropyl-beta-cyclodextrin (HPBCD) drug candidates, which are more soluble than beta-cyclodextrin (BCD), using molecular dynamics simulations and compared them with AC0107 new drug. Parameters such as cell membrane stability, protein stability, drug inhibition rate, protein permeability, hydrogen bonding agents, the study of the energy content of interactions between different groups, and interactions between different species were of interest. The outcomes indicate that the drug candidate HPBCD has a role in inhibiting protein membrane penetration and has better performance than new AC0107 drug. In other words, HPBCD not only act as a drug carrier of Alzheimer's disease, but also as an inhibitor of it and can play a double role in its improvement.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Physics Impact
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1