Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2024-07-23 DOI:10.1016/j.pestbp.2024.106037
{"title":"Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management","authors":"","doi":"10.1016/j.pestbp.2024.106037","DOIUrl":null,"url":null,"abstract":"<div><p>Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on ds<em>ACT</em> expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (<em>Plagiodera versicolora</em>). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524002700","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on dsACT expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (Plagiodera versicolora). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干旱胁迫可增强质粒介导的 RNA 干扰,从而有效防治柳叶甲
质体介导的 RNA 干扰已成为一种前景广阔的有效害虫管理方法。通过在质体中表达针对害虫重要基因的高水平双链 RNA(dsRNA),已证明能有效控制某些食草甲虫和蜘蛛螨。然而,由于植物是无柄生物,它们经常会经受生物和非生物胁迫的共同作用。非生物胁迫(如干旱胁迫)是否会影响质体中产生的 dsRNAs 的积累及其控制害虫的效果,目前仍不清楚。在本研究中,我们旨在研究干旱胁迫对杨树转细胞质中dsACT表达的影响及其对柳叶甲(Plagiodera versicolora)的防治效果。我们的研究结果表明,干旱胁迫对杨树转殖体植株中的dsRNA含量没有显著影响,但却导致昆虫幼虫死亡率升高。死亡率的增加可能是由于缺水引起的茉莉酸和半胱氨酸蛋白酶抑制剂水平的增加。这些结果有助于理解植物缺水与昆虫表现之间的关联机制,并为在干旱胁迫条件下实施适当的害虫控制策略提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Salicylic acid functionalized chitosan nanocomposite increases bioactive components and insect resistance of Agastache rugosa Genetic structure and pyrimethanil resistance of Botrytis spp. causing gray mold on strawberry from greenhouses in Zhejiang, China Fatty acid synthase 2 knockdown alters the energy allocation strategy between immunity and reproduction during infection by Micrococcus luteus in Locusta migratoria Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes Palliative potential of velutin against abamectin induced cardiac toxicity via regulating JAK1/STAT3, NF-κB, Nrf-2/Keap-1 signaling pathways: An insight from molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1