Prognostic Model and Immune Response of Clear Cell Renal Cell Carcinoma Based on Co-Expression Genes Signature

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-18 DOI:10.1016/j.clgc.2024.102167
Dongsheng Yang
{"title":"Prognostic Model and Immune Response of Clear Cell Renal Cell Carcinoma Based on Co-Expression Genes Signature","authors":"Dongsheng Yang","doi":"10.1016/j.clgc.2024.102167","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The identification of reliable prognostic markers is crucial for optimizing patient management and improving clinical outcomes in clear cell renal cell carcinoma (ccRCC).</p></div><div><h3>Methods</h3><p>We used the GSE89563 dataset from the GEO database and the Kidney Clear Cell Carcinoma (KIRC) dataset from the TCGA database to develop a prognostic model based on weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization (NMF) to predict disease progression and prognosis in ccRCC.</p></div><div><h3>Result</h3><p>We utilized WGCNA to identify risk genes and applied NMF to stratify high-risk populations in ccRCC. We characterized the immune gene features of these high-risk groups and ultimately developed a risk prediction model for ccRCC patients using a Lasso regression approach. The risk score was calculated as follows: Risk score = SUM (-0.136394797 ANK3 + 0.004238138 BIVM_ERCC5 - 0.046248451 C4orf19 - 0.036013206 F2RL3 - 0.125531316 GNG7 - 0.012698109 METTL7A + 0.078462369 MSTO1 - 0.050450656 PINK1 - 0.059446590 SLC16A12 - 0.039883686 SLC2A9 + 0.083310722 TLCD1 - 0.059801739 WDR72 + 0.071430088 ZNF117).</p></div><div><h3>Conclusion</h3><p>We develop a prognostic model for clear cell renal cell carcinoma and analyzed immune response in subgroups and confirmed protein-level expression concordance.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1558767324001381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The identification of reliable prognostic markers is crucial for optimizing patient management and improving clinical outcomes in clear cell renal cell carcinoma (ccRCC).

Methods

We used the GSE89563 dataset from the GEO database and the Kidney Clear Cell Carcinoma (KIRC) dataset from the TCGA database to develop a prognostic model based on weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization (NMF) to predict disease progression and prognosis in ccRCC.

Result

We utilized WGCNA to identify risk genes and applied NMF to stratify high-risk populations in ccRCC. We characterized the immune gene features of these high-risk groups and ultimately developed a risk prediction model for ccRCC patients using a Lasso regression approach. The risk score was calculated as follows: Risk score = SUM (-0.136394797 ANK3 + 0.004238138 BIVM_ERCC5 - 0.046248451 C4orf19 - 0.036013206 F2RL3 - 0.125531316 GNG7 - 0.012698109 METTL7A + 0.078462369 MSTO1 - 0.050450656 PINK1 - 0.059446590 SLC16A12 - 0.039883686 SLC2A9 + 0.083310722 TLCD1 - 0.059801739 WDR72 + 0.071430088 ZNF117).

Conclusion

We develop a prognostic model for clear cell renal cell carcinoma and analyzed immune response in subgroups and confirmed protein-level expression concordance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共表达基因特征的透明细胞肾细胞癌预后模型和免疫反应
背景识别可靠的预后标志物对于优化患者管理和改善透明细胞肾细胞癌(ccRCC)的临床预后至关重要。方法我们利用GEO数据库的GSE89563数据集和TCGA数据库的肾透明细胞癌(KIRC)数据集,基于加权基因共表达网络分析(WGCNA)和非负矩阵因式分解(NMF)建立了一个预后模型,以预测ccRCC的疾病进展和预后。我们对这些高危人群的免疫基因特征进行了描述,并最终利用拉索回归方法为ccRCC患者建立了一个风险预测模型。风险评分的计算方法如下:风险评分 = SUM (-0.136394797 ANK3 + 0.004238138 BIVM_ERCC5 - 0.046248451 C4orf19 - 0.036013206 F2RL3 - 0.125531316 GNG7 - 0.012698109 METTL7A + 0.078462369 MSTO1 - 0.050450656 PINK1 - 0.059446590 SLC16A12 - 0.039883686 SLC2A9 + 0.083310722 TLCD1 - 0.059801739 WDR72 + 0.071430088 ZNF117)。结论我们建立了透明细胞肾细胞癌的预后模型,分析了亚组的免疫反应,并确认了蛋白水平表达的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1