Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin
{"title":"Unveiling a giant electrocaloric effect at low electric fields through continuous phase transition design","authors":"Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin","doi":"10.1016/j.apmate.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–<em>x</em>)Pb(Lu<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-<em>x</em>PbTiO<sub>3</sub> (PLN-<em>x</em>PT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for <em>x</em>=0.10−0.18 components. Direct measurements of EC performance highlight <em>x</em>=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (Δ<em>T</em>) of 3.03 K, EC strength (Δ<em>T</em>/Δ<em>E</em>) of 0.08 K cm kV<sup>−1</sup>, and a temperature span (<em>T</em><sub>span</sub>) of 31 °C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide <em>T</em><sub>span</sub>. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563/pdfft?md5=be349a546d6ace2de32313c7af10175b&pid=1-s2.0-S2772834X24000563-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for x=0.10−0.18 components. Direct measurements of EC performance highlight x=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (ΔT) of 3.03 K, EC strength (ΔT/ΔE) of 0.08 K cm kV−1, and a temperature span (Tspan) of 31 °C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.