Unveiling a giant electrocaloric effect at low electric fields through continuous phase transition design

Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin
{"title":"Unveiling a giant electrocaloric effect at low electric fields through continuous phase transition design","authors":"Yunyao Huang ,&nbsp;Leiyang Zhang ,&nbsp;Pingji Ge ,&nbsp;Ruiyi Jing ,&nbsp;Wenjing Shi ,&nbsp;Chao Li ,&nbsp;Xiang Niu ,&nbsp;Vladimir Shur ,&nbsp;Haibo Zhang ,&nbsp;Shengguo Lu ,&nbsp;Yintang Yang ,&nbsp;Dawei Wang ,&nbsp;Xiaoqin Ke ,&nbsp;Li Jin","doi":"10.1016/j.apmate.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–<em>x</em>)Pb(Lu<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-<em>x</em>PbTiO<sub>3</sub> (PLN-<em>x</em>PT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for <em>x</em>=0.10−0.18 components. Direct measurements of EC performance highlight <em>x</em>=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (Δ<em>T</em>) of 3.03 ​K, EC strength (Δ<em>T</em>/Δ<em>E</em>) of 0.08 ​K ​cm kV<sup>−1</sup>, and a temperature span (<em>T</em><sub>span</sub>) of 31 ​°C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide <em>T</em><sub>span</sub>. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563/pdfft?md5=be349a546d6ace2de32313c7af10175b&pid=1-s2.0-S2772834X24000563-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for x=0.10−0.18 components. Direct measurements of EC performance highlight x=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (ΔT) of 3.03 ​K, EC strength (ΔTE) of 0.08 ​K ​cm kV−1, and a temperature span (Tspan) of 31 ​°C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过连续相变设计揭示低电场下的巨大电致发光效应
据报道,铁电体中的电致冷(EC)效应有望应用于下一代固态制冷技术,展现出巨大的发展潜力。本研究在 (1-x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT) 陶瓷中引入了一种新颖高效的 EC 效应策略,用于低电场驱动设备。相场模拟提供了对热诱导连续相变的基本见解,为后续实验研究提供了指导。我们构建了一个全面的成分/温度驱动相变图,阐明了 x=0.10-0.18 成分时从铁电(FE)到反铁电(AFE),最后到副电(PE)相的顺序转变。对电致发光性能的直接测量突出显示了 x=0.16 的卓越性能,包括 3.03 K 的绝热温度变化 (ΔT)、0.08 K cm kV-1 的电致发光强度 (ΔT/ΔE)和 31 °C 的温度跨度 (Tspan)。卓越的导电率效应性能归功于在低电场下由温度引起的 FE 到 AFE 的转变,而扩散相变行为则有助于实现较宽的 Tspan。这项工作为通过连续相变的战略设计在宽温度范围内开发高性能导电率效应提供了宝贵的见解,为推进生态友好型高效固态冷却技术提供了一种简化而经济的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Atomically dispersed Fe boosting elimination performance of g-C3N4 towards refractory sulfonic azo compounds via catalyst-contaminant interaction Controllable synthesis and heterogeneous tailoring of 1D perovskites, emerging properties and applications Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium 3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor Heteroatom doping in 2D MXenes for energy storage/conversion applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1