Junfang Cheng , Jiaxin Han , Chang Xu , Hao Zhang , Xufeng Dong , Xijing Zhuang , Min Qi
{"title":"Nano silver composite hydroxyethyl methacrylate/vinylpyrrolidone hydrogel: Tissue adhesives with antibacterial properties","authors":"Junfang Cheng , Jiaxin Han , Chang Xu , Hao Zhang , Xufeng Dong , Xijing Zhuang , Min Qi","doi":"10.1016/j.jcomc.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial wound infections are prevalent in daily life. However, conventional tissue adhesives lack antimicrobial properties. In this study, a redox method was employed to prepare a nano-silver solution with tannic acid as a dispersant. Subsequently, the nano-silver solution was combined with the precursor solution of the hydroxyethyl methacrylate/vinylpyrrolidone (HEMA/NVP) hydrogel. Finally, it was put under ultraviolet light to produce the hydrogel. The hydrogel exhibits remarkable extendibility (1223 %), an elastic modulus compatible with human skin tissue (3.7 ± 0.5 kPa), the strong adhesion to porcine skin tissue (24.67 ± 1.15 kPa) markedly exceeds that achieved by clinically utilized fibrin glue, low swelling ratio (75 ± 1.55 %), and demonstrates good in vitro antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, it displays excellent biocompatibility with fibroblast cells (NIH/3T3) with cell viability above 80 %, favorable blood compatibility with goat blood, and moderate coagulation ability. It provides more possibilities for clinical wound repair.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100498"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000677/pdfft?md5=2b7ff85e6c695bd51e392b571f3b7b54&pid=1-s2.0-S2666682024000677-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial wound infections are prevalent in daily life. However, conventional tissue adhesives lack antimicrobial properties. In this study, a redox method was employed to prepare a nano-silver solution with tannic acid as a dispersant. Subsequently, the nano-silver solution was combined with the precursor solution of the hydroxyethyl methacrylate/vinylpyrrolidone (HEMA/NVP) hydrogel. Finally, it was put under ultraviolet light to produce the hydrogel. The hydrogel exhibits remarkable extendibility (1223 %), an elastic modulus compatible with human skin tissue (3.7 ± 0.5 kPa), the strong adhesion to porcine skin tissue (24.67 ± 1.15 kPa) markedly exceeds that achieved by clinically utilized fibrin glue, low swelling ratio (75 ± 1.55 %), and demonstrates good in vitro antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, it displays excellent biocompatibility with fibroblast cells (NIH/3T3) with cell viability above 80 %, favorable blood compatibility with goat blood, and moderate coagulation ability. It provides more possibilities for clinical wound repair.