Exploring the frontiers of electrochemical CO2 conversion: A comprehensive review

IF 17.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2025-10-01 DOI:10.1016/j.nanoms.2024.05.005
Shahid Ashraf , Osama Gohar , Muhammad Zubair Khan , Urooj Tariq , Jawad Ahmad , Ramsha Javed Awan , Kun Zheng , Junaid ur Rehman , Muhammad Ramzan Abdul Karim , Hafiz Ahmad Ishfaq , Zafar Said , Martin Motola , Ning Han , Muhammad Bilal Hanif
{"title":"Exploring the frontiers of electrochemical CO2 conversion: A comprehensive review","authors":"Shahid Ashraf ,&nbsp;Osama Gohar ,&nbsp;Muhammad Zubair Khan ,&nbsp;Urooj Tariq ,&nbsp;Jawad Ahmad ,&nbsp;Ramsha Javed Awan ,&nbsp;Kun Zheng ,&nbsp;Junaid ur Rehman ,&nbsp;Muhammad Ramzan Abdul Karim ,&nbsp;Hafiz Ahmad Ishfaq ,&nbsp;Zafar Said ,&nbsp;Martin Motola ,&nbsp;Ning Han ,&nbsp;Muhammad Bilal Hanif","doi":"10.1016/j.nanoms.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical conversion of carbon dioxide into valuable products is pivotal for maintaining the global carbon cycle and mitigating global warming. This review explores the advancements in electrochemical CO<sub>2</sub> conversion, particularly focusing on producing methanol, ethanol, and n-propanol using various catalysts such as metals, metal oxides, metal alloys, and metal organic frameworks. Additionally, it covers the photoelectrochemical (PEC) conversion of CO<sub>2</sub> into alcohols. The primary objective is to identify efficient electrocatalysts for ethanol, methanol, and n-propanol production, prioritizing selectivity, stability, Faradaic efficiency (FE), and current density. Notable catalysts include Pt<sub>x</sub>Zn nanoalloys, which exhibit an FE of ∼81.4 ​% for methanol production, and trimetallic Pt/Pb/Zn nanoalloys, aimed at reducing Pt costs while enhancing catalyst stability and durability. Metal oxide catalysts like thin film Cu<sub>2</sub>O/CuO on nickel foam and Cu<sub>2</sub>O/ZnO achieve FE values of ∼38 ​% and ∼16.6 ​% for methanol production, respectively. Copper-based metal-organic frameworks, such as Cu@ Cu<sub>2</sub>O, demonstrate an FE of ∼45 ​% for methanol production. Similarly, Ag<sub>0.14</sub>/Cu<sub>0.86</sub> and Cu–Zn alloys exhibit FEs of ∼63 ​% and ∼46.6 ​%, respectively, for ethanol production. Notably, n-propanol production via Pd–Cu alloy and graphene/ZnO/Cu<sub>2</sub>O yields FEs of ∼13.7 ​% and ∼23 ​%, respectively. Furthermore, the review discusses recent advancements in PEC reactor design, photoelectrodes, reaction mechanisms, and catalyst durability. By evaluating the efficiency of these devices in liquid fuel production, the review addresses challenges and prospects in CO<sub>2</sub> conversion for obtaining various valuable products.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 5","pages":"Pages 565-581"},"PeriodicalIF":17.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical conversion of carbon dioxide into valuable products is pivotal for maintaining the global carbon cycle and mitigating global warming. This review explores the advancements in electrochemical CO2 conversion, particularly focusing on producing methanol, ethanol, and n-propanol using various catalysts such as metals, metal oxides, metal alloys, and metal organic frameworks. Additionally, it covers the photoelectrochemical (PEC) conversion of CO2 into alcohols. The primary objective is to identify efficient electrocatalysts for ethanol, methanol, and n-propanol production, prioritizing selectivity, stability, Faradaic efficiency (FE), and current density. Notable catalysts include PtxZn nanoalloys, which exhibit an FE of ∼81.4 ​% for methanol production, and trimetallic Pt/Pb/Zn nanoalloys, aimed at reducing Pt costs while enhancing catalyst stability and durability. Metal oxide catalysts like thin film Cu2O/CuO on nickel foam and Cu2O/ZnO achieve FE values of ∼38 ​% and ∼16.6 ​% for methanol production, respectively. Copper-based metal-organic frameworks, such as Cu@ Cu2O, demonstrate an FE of ∼45 ​% for methanol production. Similarly, Ag0.14/Cu0.86 and Cu–Zn alloys exhibit FEs of ∼63 ​% and ∼46.6 ​%, respectively, for ethanol production. Notably, n-propanol production via Pd–Cu alloy and graphene/ZnO/Cu2O yields FEs of ∼13.7 ​% and ∼23 ​%, respectively. Furthermore, the review discusses recent advancements in PEC reactor design, photoelectrodes, reaction mechanisms, and catalyst durability. By evaluating the efficiency of these devices in liquid fuel production, the review addresses challenges and prospects in CO2 conversion for obtaining various valuable products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索二氧化碳电化学转化的前沿:全面回顾
二氧化碳的电化学转化为有价值的产品是维持全球碳循环和减缓全球变暖的关键。本文综述了电化学CO2转化的研究进展,重点介绍了利用金属、金属氧化物、金属合金和金属有机框架等多种催化剂制备甲醇、乙醇和正丙醇的研究进展。此外,它涵盖了光电化学(PEC)二氧化碳转化为醇。主要目的是确定乙醇、甲醇和正丙醇生产的高效电催化剂,优先考虑选择性、稳定性、法拉第效率(FE)和电流密度。值得注意的催化剂包括PtxZn纳米合金,其甲醇生产的FE为~ 81.4%,以及三金属Pt/Pb/Zn纳米合金,旨在降低Pt成本,同时提高催化剂的稳定性和耐用性。金属氧化物催化剂,如泡沫镍上的Cu2O/CuO薄膜和Cu2O/ZnO,在甲醇生产中分别达到了~ 38%和~ 16.6%的FE值。铜基金属有机框架,如Cu@ Cu2O,甲醇生产的FE为~ 45%。同样,Ag0.14/Cu0.86和Cu-Zn合金在乙醇生产中的FEs分别为~ 63%和~ 46.6%。值得注意的是,通过Pd-Cu合金和石墨烯/ZnO/Cu2O生产正丙醇的产率分别为~ 13.7%和~ 23%。此外,本文还讨论了PEC反应器设计、光电极、反应机理和催化剂耐久性方面的最新进展。通过评估这些装置在液体燃料生产中的效率,本文提出了在二氧化碳转化中获得各种有价值产品的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries Unique heterostructures of ZnCdS nanoplates with Bi2S3−terminated edges for optimal CO2−to−CO photoconversion The role of graphene in rechargeable lithium batteries: Synthesis, functionalisation, and perspectives The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices Alkali metal cations change the hydrogen evolution reaction mechanisms at Pt electrodes in alkaline media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1