{"title":"Graphene based electrochemical biosensors for the detection of cardiac biomarkers","authors":"Md Asraful Alam","doi":"10.1016/j.biosx.2024.100515","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiovascular disease (CVD) is the leading cause of mortality around the world. Diagnosis of CVD using biosensing strategy poised to improve the precision and efficiency of CVD treatment in standard clinical practice. Electrochemical biosensors show great promise for early and accurate diagnosis of cardiovascular diseases, paving the way for personalized medicine and improved patient outcomes. Nanomaterials are emerging as a must need tool in biosensor fabrication. Graphene-based nanomaterials exhibit exceptional electrical conductivity, large surface area, and enhanced biofunctionalization ability for the receptor molecules, serving as an ideal platform for sensitive and selective biosensing applications, which in turn offers high sensitivity, rapid response times, and portability, making them ideal for point-of-care testing. The use of aptamers or molecularly imprinted polymers over antibodies as receptor can provide tool to develop innovative, highly stable biosensors over classical biosensors. In this review, electrochemical state-of-art technology for biosensor development incorporating graphene-related nanomaterials are discussed. Recently developed graphene-based electrochemical nanobiosensors for cardiac biomarker detection are reviewed. Current trends in biosensing strategy and future perspectives are outlined, with a focus on the potential use of graphene-related nanomaterials in electrochemical biosensing platforms.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100515"},"PeriodicalIF":10.6100,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000797/pdfft?md5=3174ab30a695245823d7ac44f50acf1d&pid=1-s2.0-S2590137024000797-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality around the world. Diagnosis of CVD using biosensing strategy poised to improve the precision and efficiency of CVD treatment in standard clinical practice. Electrochemical biosensors show great promise for early and accurate diagnosis of cardiovascular diseases, paving the way for personalized medicine and improved patient outcomes. Nanomaterials are emerging as a must need tool in biosensor fabrication. Graphene-based nanomaterials exhibit exceptional electrical conductivity, large surface area, and enhanced biofunctionalization ability for the receptor molecules, serving as an ideal platform for sensitive and selective biosensing applications, which in turn offers high sensitivity, rapid response times, and portability, making them ideal for point-of-care testing. The use of aptamers or molecularly imprinted polymers over antibodies as receptor can provide tool to develop innovative, highly stable biosensors over classical biosensors. In this review, electrochemical state-of-art technology for biosensor development incorporating graphene-related nanomaterials are discussed. Recently developed graphene-based electrochemical nanobiosensors for cardiac biomarker detection are reviewed. Current trends in biosensing strategy and future perspectives are outlined, with a focus on the potential use of graphene-related nanomaterials in electrochemical biosensing platforms.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.