Stefan Manuel Noisternig , Christian Rentenberger , Christoph Gammer , H. Peter Karnthaler , Jani Kotakoski
{"title":"Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beam","authors":"Stefan Manuel Noisternig , Christian Rentenberger , Christoph Gammer , H. Peter Karnthaler , Jani Kotakoski","doi":"10.1016/j.ultramic.2024.114019","DOIUrl":null,"url":null,"abstract":"<div><p>Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"265 ","pages":"Article 114019"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000986/pdfft?md5=485b4dbb0b43d77ef1652630b9d48731&pid=1-s2.0-S0304399124000986-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.