Foreign object damage behavior and failure mechanism of Al2O3-modified TBCs prepared by PS-PVD

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Transactions of Nonferrous Metals Society of China Pub Date : 2024-07-01 DOI:10.1016/S1003-6326(24)66541-6
Zi-fan WANG , Jia-feng FAN , Kai-wen KANG , Jian WU , Min LIU , Ke-song ZHOU , Qian ZHANG , Zhi-bo ZHANG , Xiao-qiang LI , Xiao-feng ZHANG
{"title":"Foreign object damage behavior and failure mechanism of Al2O3-modified TBCs prepared by PS-PVD","authors":"Zi-fan WANG ,&nbsp;Jia-feng FAN ,&nbsp;Kai-wen KANG ,&nbsp;Jian WU ,&nbsp;Min LIU ,&nbsp;Ke-song ZHOU ,&nbsp;Qian ZHANG ,&nbsp;Zhi-bo ZHANG ,&nbsp;Xiao-qiang LI ,&nbsp;Xiao-feng ZHANG","doi":"10.1016/S1003-6326(24)66541-6","DOIUrl":null,"url":null,"abstract":"<div><p>Particle erosion induced by foreign object damage (FOD) is an important factor that restricts the working life of thermal barrier coatings (TBCs). A dense <em>α</em>-Al<sub>2</sub>O<sub>3</sub> overlay was prepared by magnetron sputtering and vacuum treatment on the surface of 7YSZ TBCs sprayed by plasma spray-physical vapor deposition (PS-PVD) to improve the erosion resistance of the TBCs. The FOD behavior of the TBCs was systematically studied and the interface of <em>α</em>-Al<sub>2</sub>O<sub>3</sub>/<em>c</em>-ZrO<sub>2</sub> was investigated by first principles calculations. The experimental results show that the erosion rates of the PS-PVD, atmospheric plasma spraying (APS), and electron beam-physical vapor deposition (EB-PVD) TBCs were 324, 248, and 139 μg/g, respectively, while the erosion rate of the Al<sub>2</sub>O<sub>3</sub>-modified PS-PVD TBCs was reduced to 199 μg/g. In addition, the highest interface adhesive energy of 3.88 J/m<sup>2</sup> observed in the top configuration model of Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub>−O is much higher than that of ZrO<sub>2</sub>/Ni (2.011 J/m <sup>2</sup>), which results in improved interface bonding performance.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 7","pages":"Pages 2289-2303"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665416/pdf?md5=0241033395b2ad48eeae699f305a4b38&pid=1-s2.0-S1003632624665416-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665416","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Particle erosion induced by foreign object damage (FOD) is an important factor that restricts the working life of thermal barrier coatings (TBCs). A dense α-Al2O3 overlay was prepared by magnetron sputtering and vacuum treatment on the surface of 7YSZ TBCs sprayed by plasma spray-physical vapor deposition (PS-PVD) to improve the erosion resistance of the TBCs. The FOD behavior of the TBCs was systematically studied and the interface of α-Al2O3/c-ZrO2 was investigated by first principles calculations. The experimental results show that the erosion rates of the PS-PVD, atmospheric plasma spraying (APS), and electron beam-physical vapor deposition (EB-PVD) TBCs were 324, 248, and 139 μg/g, respectively, while the erosion rate of the Al2O3-modified PS-PVD TBCs was reduced to 199 μg/g. In addition, the highest interface adhesive energy of 3.88 J/m2 observed in the top configuration model of Al2O3/ZrO2−O is much higher than that of ZrO2/Ni (2.011 J/m 2), which results in improved interface bonding performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PS-PVD 法制备的 Al2O3 改性 TBC 的异物损伤行为和失效机理
异物损伤(FOD)引起的微粒侵蚀是限制热障涂层(TBC)工作寿命的一个重要因素。通过磁控溅射和真空处理,在等离子喷涂-物理气相沉积(PS-PVD)喷涂的 7YSZ 热障涂层表面制备了致密的 αAl2O3 涂层,以提高热障涂层的抗侵蚀能力。系统研究了 TBC 的 FOD 行为,并通过第一性原理计算研究了 α-Al2O3/c-ZrO2 的界面。实验结果表明,PS-PVD、大气等离子喷涂(APS)和电子束-物理气相沉积(EB-PVD)TBC 的侵蚀率分别为 324、248 和 139 μg/g,而 Al2O3 改性 PS-PVD TBC 的侵蚀率则降至 199 μg/g。此外,在 Al2O3/ZrO2-O 顶部构型模型中观察到的最高界面粘合能为 3.88 J/m2,远高于 ZrO2/Ni 的界面粘合能(2.011 J/m 2),从而改善了界面粘合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
期刊最新文献
Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review Phase transformation in titanium alloys: A review Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation Modeling of recrystallization behaviour of AA6xxx aluminum alloy during extrusion process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1