{"title":"Reconstruction of particle distribution for tomographic particle image velocimetry based on unsupervised learning method","authors":"Duanyu Zhang , Haoqin Huang , Wu Zhou , Mingjun Feng , Dapeng Zhang , Limin Gao","doi":"10.1016/j.partic.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>The development of deep learning has inspired some new methods to solve the 3D reconstruction problem for Tomographic Particle Image Velocimetry (Tomo-PIV). However, the supervised learning method requires a large number of data with ground truth as training information, which is very difficult to gather from experiments. Although synthetic datasets can be used as alternatives, they are still not exactly the same with the real-world experimental data. In this paper, an Unsupervised Reconstruction Technique based on U-net (UnRTU) is proposed to reconstruct volume particle distribution explicitly. Instead of using ground truth data, a projection function is used as an unsupervised loss function for network training to reconstruct particle distribution. The UnRTU was compared with some traditional algebraic reconstruction algorithms and supervised learning method using synthetic data under different particle density and noise level. The results indicate that UnRTU outperforms these traditional approaches in both reconstruction quality and noise robustness, and is comparable to the supervised learning methods AI-PR. For experimental tests, particles dispersed in cured epoxy resin are moved by an electric rail with a certain speed to obtain the ground truth data of particle velocity. Compared with other algorithms, the reconstructed particle distribution by UnRTU has the best reconstruction fidelity. And the accuracy of the 3D velocity field estimated by UnRTU is 12.9% higher than that from the traditional MLOS-MART algorithm. It demonstrates significant potential and advantages for UnRTU in 3D reconstruction of particle distribution. Finally, UnRTU was successfully applied to the high-speed planar cascade airflow field, demonstrating its applicability for measuring complex fluid flow fields at higher particle density.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 349-363"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674200124001263/pdfft?md5=82bc0536db5dc092f080bd7cc6996fb5&pid=1-s2.0-S1674200124001263-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001263","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of deep learning has inspired some new methods to solve the 3D reconstruction problem for Tomographic Particle Image Velocimetry (Tomo-PIV). However, the supervised learning method requires a large number of data with ground truth as training information, which is very difficult to gather from experiments. Although synthetic datasets can be used as alternatives, they are still not exactly the same with the real-world experimental data. In this paper, an Unsupervised Reconstruction Technique based on U-net (UnRTU) is proposed to reconstruct volume particle distribution explicitly. Instead of using ground truth data, a projection function is used as an unsupervised loss function for network training to reconstruct particle distribution. The UnRTU was compared with some traditional algebraic reconstruction algorithms and supervised learning method using synthetic data under different particle density and noise level. The results indicate that UnRTU outperforms these traditional approaches in both reconstruction quality and noise robustness, and is comparable to the supervised learning methods AI-PR. For experimental tests, particles dispersed in cured epoxy resin are moved by an electric rail with a certain speed to obtain the ground truth data of particle velocity. Compared with other algorithms, the reconstructed particle distribution by UnRTU has the best reconstruction fidelity. And the accuracy of the 3D velocity field estimated by UnRTU is 12.9% higher than that from the traditional MLOS-MART algorithm. It demonstrates significant potential and advantages for UnRTU in 3D reconstruction of particle distribution. Finally, UnRTU was successfully applied to the high-speed planar cascade airflow field, demonstrating its applicability for measuring complex fluid flow fields at higher particle density.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.